Ariz Arnedo, Idoia

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ariz Arnedo

First Name

Idoia

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 1 of 1
  • PublicationOpen Access
    Use of recombinant iron-superoxide dismutase as a marker of nitrative stress
    (Elservier, 2008-04-20) Larrainzar Rodríguez, Estíbaliz; Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; González García, Esther; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 57/2007
    Superoxide dismutases (SODs; EC 1.15.1.1) are a group of metalloenzymes which are essential to protect cells under aerobic conditions. In biological systems, it has been reported that SODs and other proteins are susceptible to be attacked by peroxynitrite (ONOO-) which can be originated from the reaction of nitric oxide with superoxide radical. ONOO- is a strong oxidant molecule capable of nitrating peptides and proteins at the phenyl side chain of the tyrosine residues. In the present work, bovine serum albumin (BSA) and recombinant iron¿superoxide dismutase from the plant cowpea (Vu_FeSOD) are used as target molecules to estimate ONOO- production. The method employs the compound SIN-1, which simultaneously generates -NO and O2- in aerobic aqueous solutions. First, assay conditions were optimized incubating BSA with different concentrations of SIN-1, and at a later stage, the effect on the tyrosine nitration and catalytic activity of Vu_FeSOD was examined by in-gel activity and spectrophotometric assays. Both BSA and Vu_FeSOD are nitrated in a dose-dependent manner, and, at least in BSA nitration, the reaction seems to be metal catalyzed.