Adin Urtasun, Aritz

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Adin Urtasun

First Name

Aritz

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Dealing with risk discontinuities to estimate cancer mortality risks when the number of small areas is large
    (SAGE, 2021-02-17) Santafé Rodrigo, Guzmán; Adin Urtasun, Aritz; Lee, Duncan; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    Many statistical models have been developed during the last years to smooth risks in disease mapping. However, most of these modeling approaches do not take possible local discontinuities into consideration or if they do, they are computationally prohibitive or simply do not work when the number of small areas is large. In this paper, we propose a two-step method to deal with discontinuities and to smooth noisy risks in small areas. In a first stage, a novel density-based clustering algorithm is used. In contrast to previous proposals, this algorithm is able to automatically detect the number of spatial clusters, thus providing a single cluster structure. In the second stage, a Bayesian hierarchical spatial model that takes the cluster configuration into account is fitted, which accounts for the discontinuities in disease risk. To evaluate the performance of this new procedure in comparison to previous proposals, a simulation study has been conducted. Results show competitive risk estimates at a much better computational cost. The new methodology is used to analyze stomach cancer mortality data in Spanish municipalities.
  • PublicationOpen Access
    Online relative risks/rates estimation in spatial and spatio-temporal disease mapping
    (Elsevier, 2019) Adin Urtasun, Aritz; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    Background and objective: Spatial and spatio-temporal analyses of count data are crucial in epidemiology and other fields to unveil spatial and spatio-temporal patterns of incidence and/or mortality risks. However, fitting spatial and spatio-temporal models is not easy for non-expert users. The objective of this paper is to present an interactive and user-friendly web application (named SSTCDapp) for the analysis of spatial and spatio-temporal mortality or incidence data. Although SSTCDapp is simple to use, the underlying statistical theory is well founded and all key issues such as model identifiability, model selection, and several spatial priors and hyperpriors for sensitivity analyses are properly addressed. Methods: The web application is designed to fit an extensive range of fairly complex spatio-temporal models to smooth the very often extremely variable standardized incidence/mortality risks or crude rates. The application is built with the R package shiny and relies on the well founded integrated nested Laplace approximation technique for model fitting and inference. Results: The use of the web application is shown through the analysis of Spanish spatio-temporal breast cancer data. Different possibilities for the analysis regarding the type of model, model selection criteria, and a range of graphical as well as numerical outputs are provided. Conclusions: Unlike other software used in disease mapping, SSTCDapp facilitates the fit of complex statistical models to non-experts users without the need of installing any software in their own computers, since all the analyses and computations are made in a powerful remote server. In addition, a desktop version is also available to run the application locally in those cases in which data confidentiality is a serious issue.
  • PublicationOpen Access
    Temporal evolution of brain cancer incidence in the municipalities of Navarre and the Basque Country, Spain
    (BioMed Central, 2015) Ugarte Martínez, María Dolores; Adin Urtasun, Aritz; Goicoa Mangado, Tomás; Casado, Itziar; Ardanaz, Eva; Larrañaga, Nerea; Estatistika eta Ikerketa Operatiboa; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística e Investigación Operativa; Gobierno de Navarra / Nafarroako Gobernua: proyecto 113 Res. 2186/2014
    Background: Brain cancer incidence rates in Spain are below the European’s average. However, there are two regions in the north of the country, Navarre and the Basque Country, ranked among the European regions with the highest incidence rates for both males and females. Our objective here was two-fold. Firstly, to describe the temporal evolution of the geographical pattern of brain cancer incidence in Navarre and the Basque Country, and secondly, to look for specific high risk areas (municipalities) within these two regions in the study period (1986–2008). Methods: A mixed Poisson model with two levels of spatial effects is used. The model also included two levels of spatial effects (municipalities and local health areas). Model fitting was carried out using penalized quasi-likelihood. High risk regions were detected using upper one-sided confidence intervals. Results: Results revealed a group of high risk areas surrounding Pamplona, the capital city of Navarre, and a few municipalities with significant high risks in the northern part of the region, specifically in the border between Navarre and the Basque Country (Gipuzkoa). The global temporal trend was found to be increasing. Differences were also observed among specific risk evolutions in certain municipalities. Conclusions: Brain cancer incidence in Navarre and the Basque Country (Spain) is still increasing with time. The number of high risk areas within those two regions is also increasing. Our study highlights the need of continuous surveillance of this cancer in the areas of high risk. However, due to the low percentage of cases explained by the known risk factors, primary prevention should be applied as a general recommendation in these populations.