Adin Urtasun, Aritz
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Adin Urtasun
First Name
Aritz
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Identifying extreme COVID-19 mortality risks in English small areas: a disease cluster approach(Springer, 2022) Adin Urtasun, Aritz; Congdon, P.; Santafé Rodrigo, Guzmán; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasThe COVID-19 pandemic is having a huge impact worldwide and has highlighted the extent of health inequalities between countries but also in small areas within a country. Identifying areas with high mortality is important both of public health mitigation in COVID-19 outbreaks, and of longer term efforts to tackle social inequalities in health. In this paper we consider different statistical models and an extension of a recent method to analyze COVID-19 related mortality in English small areas during the first wave of the epidemic in the first half of 2020. We seek to identify hotspots, and where they are most geographically concentrated, taking account of observed area factors as well as spatial correlation and clustering in regression residuals, while also allowing for spatial discontinuities. Results show an excess of COVID-19 mortality cases in small areas surrounding London and in other small areas in North-East and and North-West of England. Models alleviating spatial confounding show ethnic isolation, air quality and area morbidity covariates having a significant and broadly similar impact on COVID-19 mortality, whereas nursing home location seems to be slightly less important.Publication Open Access Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns(SAGE, 2019) Goicoa Mangado, Tomás; Adin Urtasun, Aritz; Etxeberria Andueza, Jaione; Militino, Ana F.; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2In this paper age-space-time models based on one and two-dimensional P-splines with B-spline bases are proposed for smoothing mortality rates, where both xed relative scale and scale invariant two-dimensional penalties are examined. Model tting and inference are carried out using integrated nested Laplace approximations (INLA), a recent Bayesian technique that speeds up computations compared to McMC methods. The models will be illustrated with Spanish breast cancer mortality data during the period 1985-2010, where a general decline in breast cancer mortality has been observed in Spanish provinces in the last decades. The results reveal that mortality rates for the oldest age groups do not decrease in all provinces.Publication Open Access Space-time analysis of ovarian cancer mortality rates by age groups in Spanish provinces (1989-2015)(BioMed Central, 2020) Trandafir, Paula Camelia; Adin Urtasun, Aritz; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Background: Ovarian cancer is a silent and largely asymptomatic cancer, leading to late diagnosis and worse prognosis. The late-stage detection and low survival rates, makes the study of the space-time evolution of ovarian cancer particularly relevant. In addition, research of this cancer in small areas (like provinces or counties) is still scarce. Methods: The study presented here covers all ovarian cancer deaths for women over 50 years of age in the provinces of Spain during the period 1989-2015. Spatio-temporal models have been fitted to smooth ovarian cancer mortality rates in age groups [50,60), [60,70), [70,80), and [80,+), borrowing information from spatial and temporal neighbours. Model fitting and inference has been carried out using the Integrated Nested Laplace Approximation (INLA) technique. Results: Large differences in ovarian cancer mortality among the age groups have been found, with higher mortality rates in the older age groups. Striking differences are observed between northern and southern Spain. The global temporal trends (by age group) reveal that the evolution of ovarian cancer over the whole of Spain has remained nearly constant since the early 2000s. Conclusion: Differences in ovarian cancer mortality exist among the Spanish provinces, years, and age groups. As the exact causes of ovarian cancer remain unknown, spatio-temporal analyses by age groups are essential to discover inequalities in ovarian cancer mortality. Women over 60 years of age should be the focus of follow-up studies as the mortality rates remain constant since 2002. High-mortality provinces should also be monitored to look for specific risk factors.Publication Open Access Dealing with risk discontinuities to estimate cancer mortality risks when the number of small areas is large(SAGE, 2021-02-17) Santafé Rodrigo, Guzmán; Adin Urtasun, Aritz; Lee, Duncan; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Many statistical models have been developed during the last years to smooth risks in disease mapping. However, most of these modeling approaches do not take possible local discontinuities into consideration or if they do, they are computationally prohibitive or simply do not work when the number of small areas is large. In this paper, we propose a two-step method to deal with discontinuities and to smooth noisy risks in small areas. In a first stage, a novel density-based clustering algorithm is used. In contrast to previous proposals, this algorithm is able to automatically detect the number of spatial clusters, thus providing a single cluster structure. In the second stage, a Bayesian hierarchical spatial model that takes the cluster configuration into account is fitted, which accounts for the discontinuities in disease risk. To evaluate the performance of this new procedure in comparison to previous proposals, a simulation study has been conducted. Results show competitive risk estimates at a much better computational cost. The new methodology is used to analyze stomach cancer mortality data in Spanish municipalities.