Sagüés García, Mikel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sagüés García

First Name

Mikel

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    Distributed vibration sensing based on optical vector network analysis
    (IEEE, 2024-10-28) Loayssa Lara, Alayn; Vallifuoco, Raffaele; Zahoor, Rizwan; Zeni, Luigi; Sagüés García, Mikel; Minardo, Aldo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We introduce a novel method for distributed vibration sensing based on extracting the time-domain Rayleigh impulse response of an optical fiber from optical vector network analysis measurements. The optical-frequency-domain transfer function of the fiber is first measured, and then inverse Fourier transformed to provide the bandpass optical time-domain impulse response. Another relevant feature of the technique is that it enables excitation demodulation using the optical frequency dependence of the Rayleigh backscatter signal from the optical fiber, the so-called Rayleigh signature. This is the simplest method to obtain fully linear quantitative measurements of local changes in the strain or temperature experienced by the fiber and it is inherently free from signal fading impairments. Furthermore, the implementation of the technique uses a simple setup based on double-sideband modulation of a laser, self-homodyne detection with an optical hybrid, and narrow-bandwidth electrical signal acquisition and processing. We present proof-of-concept experiments to demonstrate the operation of the method with the measurement of dynamic strain and temperature perturbations in a 115-m optical sensing fiber with 16-cm spatial resolution and a sensitivity of 59 nHz. This sensing technique has the potential to provide high-sensitivity distributed measurements of tens-of-hertz excitations in hundreds-of-meters fibers, with centimeter spatial resolution. Therefore, it can become a valuable tool for structural health monitoring in application fields such as aerospace, marine, or civil engineering.
  • PublicationOpen Access
    Distributed strain sensing with large dynamic range based on two-wavelength phase-sensitive OTDR
    (Optica Publishing Group, 2020) Piñeiro Ben, Enrique; Sagüés García, Mikel; Mompó Roselló, Juan José; Eyal, Avishay; Loayssa Lara, Alayn; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We demonstrate the use of two-wavelengths to enhance the dynamic range in phase-sensitive OTDR vibration sensors. The system overcomes the phase wrapping con- strains by the synthesis of an equivalent wavelength measurement.
  • PublicationOpen Access
    Compensation of laser phase noise in coded distributed acoustic sensing
    (Optica Publishing Group, 2023) Piñeiro Ben, Enrique; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    We demonstrate, for the first time to our knowledge, a technique for the compensation of phase noise effects in coded pulse compression DAS and compare its performance to systems using frequency-modulated pulse compression.
  • PublicationOpen Access
    Compensation of phase noise impairments in distributed acoustic sensors based on optical pulse compression time-domain reflectometry
    (IEEE, 2023) Piñeiro Ben, Enrique; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We introduce a method to compensate for the deleterious effects of the phase noise of the laser source on long-range distributed acoustic sensors (DAS) that implement optical pulse compression (OPC). Pulse compression can be used in coherent optical time-domain reflectometry (COTDR) sensors to extend the measurement range without compromising spatial resolution. In fact, OPC-COTDR sensors have demonstrated the longest measurement range to date in passive sensing links that do not require distributed amplification to compensate fiber attenuation. However, it has been found that the limited coherence of the laser source has a degrading effect on the actual performance enhancement that pulse compression can bring because it constrains the maximum duration of the compression waveforms that can be used and makes the use of lasers with extremely low phase noise necessary.We introduce a technique to compensate for the effects of phase noise on OPC-COTDR sensors so that they can demonstrate their full potential for long-range measurements using lasers with less stringent phase noise requirements. The method is based on sampling the phase noise of the laser with an auxiliary interferometer and using this information in a simple signal processing technique to mitigate its deleterious effect on the signal measured. We test our method in an OPCCOTDR sensor that uses 500-μs linear frequency modulated pulses to demonstrate 100-km range measurements with 200 p/√Hz of strain sensitivity at 2-m initial spatial resolution that becomes 10-m after applying the gauge length. To our knowledge, this is the longest compression waveform demonstrated to date in an OPCCOTDR sensor. Its use provides an extra 20-km range compared to previous demonstrations using laser sources of comparable linewidth. Furthermore, comparable performance is also demonstrated when using a laser source with an order of magnitude larger linewidth.
  • PublicationOpen Access
    Long-range and high-resolution traffic monitoring based on pulse-compression DAS and advanced vehicle tracking algorithm
    (Optica Publishing Group, 2022) Corera Orzanco, Íñigo; Piñeiro Ben, Enrique; Navallas Irujo, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We demonstrate traffic monitoring over tens of kilometres of road using an enhanced distributed acoustic sensing system based on optical pulse compression and a novel transformed-domain-based processing scheme with enhanced vehicle detection and tracking capabilities.
  • PublicationOpen Access
    Long-range traffic monitoring based on pulse-compression distributed acoustic sensing and advanced vehicle tracking and classification algorithm
    (MDPI, 2023) Corera Orzanco, Íñigo; Piñeiro Ben, Enrique; Navallas Irujo, Javier; Sagüés García, Mikel; Loayssa Lara, Alayn; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We introduce a novel long-range traffic monitoring system for vehicle detection, tracking, and classification based on fiber-optic distributed acoustic sensing (DAS). High resolution and long range are provided by the use of an optimized setup incorporating pulse compression, which, to our knowledge, is the first time that is applied to a traffic-monitoring DAS system. The raw data acquired with this sensor feeds an automatic vehicle detection and tracking algorithm based on a novel transformed domain that can be regarded as an evolution of the Hough Transform operating with non-binary valued signals. The detection of vehicles is performed by calculating the local maxima in the transformed domain for a given time-distance processing block of the detected signal. Then, an automatic tracking algorithm, which relies on a moving window paradigm, identifies the trajectory of the vehicle. Hence, the output of the tracking stage is a set of trajectories, each of which can be regarded as a vehicle passing event from which a vehicle signature can be extracted. This signature is unique for each vehicle, allowing us to implement a machine-learning algorithm for vehicle classification purposes. The system has been experimentally tested by performing measurements using dark fiber in a telecommunication fiber cable running in a buried conduit along 40 km of a road open to traffic. Excellent results were obtained, with a general classification rate of 97.7% for detecting vehicle passing events and 99.6% and 85.7% for specific car and truck passing events, respectively.
  • PublicationOpen Access
    Phase noise effects on phase-sensitive OTDR sensors using optical pulse compression
    (IEEE, 2021) Loayssa Lara, Alayn; Sagüés García, Mikel; Eyal, Avishay; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    We introduce a detailed theoretical, numerical, and experimental study of the effects of laser's phase noise on the performance of phase-sensitive optical time-domain reflectometry (-OTDR) sensors that use optical pulse compression (OPC). Pulse compression is a technique that can be used to improve the received signal amplitude by increasing the effective energy of the pulses that are launched into the fiber without degrading the spatial resolution of the measurements. Therefore, it is a valuable tool to extend the range of these sensors and mitigate fiber attenuation constraints. However, it has been observed that the limited coherence of the laser source has a degrading effect on the actual performance enhancement that this method can provide. Here, we derive a theoretical model that can be used to quantify this degradation for any type of OPC such as those based on either linear frequency modulation (LFM) pulses or perfect periodic autocorrelation (PPA) bipolar bit sequences. The model facilitates numerical estimation of the sensitivity of the -OTDR measurements. It also produces theoretical expressions for the mean and the variance of the phase-noise perturbed backscatter response. These results are validated via numerical simulations and experiments in -OTDR setups using LFM as well as PPA OPC. Furthermore, we demonstrate the use of the model to investigate the basic trade-offs involved in the design of OPC -OTDR systems.
  • PublicationOpen Access
    Two-wavelength phase-sensitive OTDR sensor using perfect periodic correlation codes for measurement range enhancement, noise reduction and fading compensation
    (Optica, 2021) Sagüés García, Mikel; Piñeiro Ben, Enrique; Cerri, Enis; Minardo, Aldo; Eyal, Avishay; Loayssa Lara, Alayn; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We demonstrate a two-wavelength differential-phase-measuring OTDR sensor that uses perfect periodic correlation phase codes to enhance the measurement performance. The two-wavelength technique extends the measurement range of OTDR sensors by synthesizing a virtual longer-wavelength measurement from two simultaneous measurements of phase using different lasers. This increases the range free from phase unwrapping errors. However, we find that the application of this technique greatly increases the relative measurement noise. To compensate for this issue, we introduce the use of optical pulse compression using perfect periodic correlation phase codes to increase the measurement signal-to-noise ratio and also to facilitate the simultaneous compensation of Rayleigh and polarization fading. In addition, we apply a method to further reduce the relative noise that is added to the two-wavelength measurement by using the synthetic wavelength measurement to unwrap the differential phase measured with a single wavelength. All this is highlighted in a 1-km sensing link in which up to 20-cm spatial resolution and 12.6 𝑝���𝜖���/𝐻���𝑧���−−−√ strain sensitivity are demonstrated as well as a 67-fold enhancement in measurement range compared with the use of the conventional single-wavelength method.
  • PublicationOpen Access
    Compensation of phase-noise in pulse-compression phase-sensitive OTDR sensors
    (Optica Publishing Group, 2022) Piñeiro Ben, Enrique; Sagüés García, Mikel; Eyal, Avishay; Loayssa Lara, Alayn; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We introduce a technique to compensate the performance impairments due to the laser phase noise in long-range pulse-compression DAS sensors. Experiments demonstrate the use of the longest duration pulse compression waveform to date.