Rodríguez Martínez, Iosu

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Rodríguez Martínez

First Name

Iosu

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 13
  • PublicationOpen Access
    De funciones de equivalencia restringida en Lⁿ a medidas de similitud entre multiconjuntos difusos
    (CAEPIA, 2024) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Takáč, Zdenko; Marco Detchart, Cedric; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Este artículo es un resumen del trabajo publicado en la revista IEEE Transactions on Fuzzy Systems. En este trabajo, presentamos una contribución a la teoría de las Funciones de Equivalencia Restringida (REF), que permite comparar elementos multivaluados. Extendemos el concepto de REF de L a Ln y presentamos una nueva construcción de similitud en Ln. A partir de esta filosofía se construyen medidas de similitud entre multiconjuntos difusos y se presenta un ejemplo aplicado en el contexto de la difusión anisotrópica de imágenes en color.
  • PublicationOpen Access
    Affine construction methodology of aggregation functions
    (Elsevier, 2020) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Rodríguez Martínez, Iosu; Fardoun, Habib; Lafuente López, Julio; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Aggregation functions have attracted much attention in recent times because of its potential use in many areas such us data fusion and decision making. In practice, most of the aggregation functions that scientists use in their studies are constructed from very simple (usually affine or polynomial) functions. However, these are distinct in nature. In this paper, we develop a systematic study of these two classes of functions from a common point of view. To do this, we introduce the class of affine aggregation functions, which cover both the aforementioned families and most of examples of aggregation functions that are used in practice, including, by its great applicability, the symmetric case. Our study allows us to characterize when a function constructed from affine or polynomial functions is, in fact, a new aggregation function. We also study when sums or products of this kind of functions are again an aggregation function.
  • PublicationOpen Access
    Generalizando el pooling maximo por funciones (a, b)-grouping en redes neuronales convolucionales
    (CAEPIA, 2024) Rodríguez Martínez, Iosu; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Herrera, Francisco; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua
    Este artículo es un resumen del trabajo publicado en la revista Information Fusion [1]. En este artículo explorábamos el reemplazo del operador de pooling máximo comunmente empleado en redes neuronales convolucionales (CNNs) por funciones (a, b)-grouping. Estas funciones extienden el concepto de función de grouping clásica [2] a un intervalo cerrado [a, b], siguiendo la filosofía de [3]. En el contexto del operador de pooling, estas nuevas funciones ayudan a la optimización de los modelos suavizando los gradientes en el proceso de retropropagación y obteniendo resultados competitivos con métodos más complejos
  • PublicationOpen Access
    A fusion method for multi-valued data
    (Elsevier, 2021) Papčo, Martin; Rodríguez Martínez, Iosu; Fumanal Idocin, Javier; Altalhi, A. H.; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this paper we propose an extension of the notion of deviation-based aggregation function tailored to aggregate multidimensional data. Our objective is both to improve the results obtained by other methods that try to select the best aggregation function for a particular set of data, such as penalty functions, and to reduce the temporal complexity required by such approaches. We discuss how this notion can be defined and present three illustrative examples of the applicability of our new proposal in areas where temporal constraints can be strict, such as image processing, deep learning and decision making, obtaining favourable results in the process.
  • PublicationOpen Access
    Generalizing max pooling via (a, b)-grouping functions for convolutional neural networks
    (Elsevier, 2023) Rodríguez Martínez, Iosu; Da Cruz Asmus, Tiago; Pereira Dimuro, Graçaliz; Herrera, Francisco; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Due to their high adaptability to varied settings and effective optimization algorithm, Convolutional Neural Networks (CNNs) have set the state-of-the-art on image processing jobs for the previous decade. CNNs work in a sequential fashion, alternating between extracting significant features from an input image and aggregating these features locally through ‘‘pooling" functions, in order to produce a more compact representation. Functions like the arithmetic mean or, more typically, the maximum are commonly used to perform this downsampling operation. Despite the fact that many studies have been devoted to the development of alternative pooling algorithms, in practice, ‘‘max-pooling" still equals or exceeds most of these possibilities, and has become the standard for CNN construction. In this paper we focus on the properties that make the maximum such an efficient solution in the context of CNN feature downsampling and propose its replacement by grouping functions, a family of functions that share those desirable properties. In order to adapt these functions to the context of CNNs, we present (𝑎, 𝑏)- grouping functions, an extension of grouping functions to work with real valued data. We present different construction methods for (𝑎, 𝑏)-grouping functions, and demonstrate their empirical applicability for replacing max-pooling by using them to replace the pooling function of many well-known CNN architectures, finding promising results.
  • PublicationEmbargo
    Extremal values-based aggregation functions
    (Elsevier, 2024-10-01) Halaš, Radomír; Mesiar, Radko; Kolesárová, Anna; Saadati, Reza; Herrera, Francisco; Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    We introduce and study aggregation functions based on extremal values, namely extended (𝑙, 𝑢)- aggregation functions whose outputs only depend on a fixed number 𝑙 of extremal lower input values and a fixed number 𝑢 of extremal upper input values, independently of the arity of the input 𝑛-tuples (𝑛 ≥ 𝑙 + 𝑢). We discuss several general properties of (𝑙, 𝑢)-aggregation functions and we study special (𝑙, 𝑢)-aggregation functions with neutral element, including t-conorms, t-norms and uninorms. We also study (𝑙, 𝑢)-aggregation functions defined by means of integrals with respect to discrete fuzzy measures, as well as (𝑙, 𝑢)-ordered weighted quasi-arithmetic means based on appropriate weighting vectors. We also stress some generalizations based on recently introduced new types of monotonicity. Some possible applications are sketched, too.
  • PublicationOpen Access
    Extensión multidimensional de la integral de Choquet discreta y su aplicación en redes neuronales recurrentes
    (Universidad de Málaga, 2021) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    En este trabajo presentamos una definición de la integral de Choquet discreta n-dimensional, para fusionar datos vectoriales. Como aplicación, utilizamos estas nuevas integrales de Choquet discretas multidimensionales en la fusión de información secuencial en las redes neuronales recurrentes, mejorando los resultados obtenidos mediante el método de agregación tradicional.
  • PublicationOpen Access
    A study on the suitability of different pooling operators for convolutional neural networks in the prediction of COVID-19 through chest x-ray image analysis
    (Elsevier, 2024) Rodríguez Martínez, Iosu; Ursúa Medrano, Pablo; Fernández Fernández, Francisco Javier; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The 2019 coronavirus disease outbreak, caused by the severe acute respiratory syndrome type-2 virus (SARS-CoV-2), was declared a pandemic in March 2020. Since its emergence to the present day, this disease has brought multiple countries to the brink of health care collapse during several waves of the disease. One of the most common tests performed on patients is chest x-ray imaging. These images show the severity of the patient's illness and whether it is indeed covid or another type of pneumonia. Automated assessment of this type of imaging could alleviate the time required for physicians to treat and diagnose each patient. To this end, in this paper we propose the use of Convolutional Neural Networks (CNNs) to carry out this process. The aim of this paper is twofold. Firstly, we present a pipeline adapted to this problem, covering all steps from the preprocessing of the datasets to the generation of classification models based on CNNs. Secondly, we have focused our study on the modification of the information fusion processes of this type of architectures, in the pooling layers. We propose a number of aggregation theory functions that are suitable to replace classical processes and have shown their benefits in past applications, and study their performance in the context of the x-ray classification problem. We find that replacing the feature reduction processes of CNNs leads to drastically different behaviours of the final model, which can be beneficial when prioritizing certain metrics such as precision or recall.
  • PublicationOpen Access
    From restricted equivalence functions on Ln to similarity measures between fuzzy multisets
    (IEEE, 2023) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Rodríguez Martínez, Iosu; Marco Detchart, Cedric; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Restricted equivalence functions are well-known functions to compare two numbers in the interval between 0 and 1. Despite the numerous works studying the properties of restricted equivalence functions and their multiple applications as support for different similarity measures, an extension of these functions to an n-dimensional space is absent from the literature. In this paper, we present a novel contribution to the restricted equivalence function theory, allowing to compare multivalued elements. Specifically, we extend the notion of restricted equivalence functions from L to L n and present a new similarity construction on L n . Our proposal is tested in the context of color image anisotropic diffusion as an example of one of its many applications.
  • PublicationOpen Access
    Reemplazo de la función de pooling de redes neuronales convolucionales por combinaciones lineales de funciones crecientes
    (Universidad de Málaga, 2021) Rodríguez Martínez, Iosu; Lafuente López, Julio; Sesma Sara, Mikel; Herrera, Francisco; Ursúa Medrano, Pablo; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Las redes convolucionales llevan a cabo un proceso automatico de extracción y fusión de características mediante el cual obtienen la información más relevante de una imagen dada. El proceso de submuestreo mediante el cual se fusionan características localmente próximas, conocido como ‘pooling’, se lleva a cabo tradicionalmente con funciones sencillas como el máximo o la media aritmética, ignorando otras opciones muy populares en el campo de la teoría de agregaciones. En este trabajo proponemos reemplazar dichas funciones por otra serie de ordenes estadísticos, así como por la integral de Sugeno y una nueva generalización de la misma. Además, basándonos en trabajos que emplean la combinación convexa del máximo y la media, presentamos una nueva capa que permite combinar varias de las nuevas agregaciones, mejorando sus resultados individuales.