Rodríguez Martínez, Iosu

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Rodríguez Martínez

First Name

Iosu

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Affine construction methodology of aggregation functions
    (Elsevier, 2020) Roldán López de Hierro, Antonio Francisco; Roldán, Concepción; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Rodríguez Martínez, Iosu; Fardoun, Habib; Lafuente López, Julio; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Aggregation functions have attracted much attention in recent times because of its potential use in many areas such us data fusion and decision making. In practice, most of the aggregation functions that scientists use in their studies are constructed from very simple (usually affine or polynomial) functions. However, these are distinct in nature. In this paper, we develop a systematic study of these two classes of functions from a common point of view. To do this, we introduce the class of affine aggregation functions, which cover both the aforementioned families and most of examples of aggregation functions that are used in practice, including, by its great applicability, the symmetric case. Our study allows us to characterize when a function constructed from affine or polynomial functions is, in fact, a new aggregation function. We also study when sums or products of this kind of functions are again an aggregation function.
  • PublicationOpen Access
    Extensión multidimensional de la integral de Choquet discreta y su aplicación en redes neuronales recurrentes
    (Universidad de Málaga, 2021) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    En este trabajo presentamos una definición de la integral de Choquet discreta n-dimensional, para fusionar datos vectoriales. Como aplicación, utilizamos estas nuevas integrales de Choquet discretas multidimensionales en la fusión de información secuencial en las redes neuronales recurrentes, mejorando los resultados obtenidos mediante el método de agregación tradicional.
  • PublicationOpen Access
    A study on the suitability of different pooling operators for convolutional neural networks in the prediction of COVID-19 through chest x-ray image analysis
    (Elsevier, 2024) Rodríguez Martínez, Iosu; Ursúa Medrano, Pablo; Fernández Fernández, Francisco Javier; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The 2019 coronavirus disease outbreak, caused by the severe acute respiratory syndrome type-2 virus (SARS-CoV-2), was declared a pandemic in March 2020. Since its emergence to the present day, this disease has brought multiple countries to the brink of health care collapse during several waves of the disease. One of the most common tests performed on patients is chest x-ray imaging. These images show the severity of the patient's illness and whether it is indeed covid or another type of pneumonia. Automated assessment of this type of imaging could alleviate the time required for physicians to treat and diagnose each patient. To this end, in this paper we propose the use of Convolutional Neural Networks (CNNs) to carry out this process. The aim of this paper is twofold. Firstly, we present a pipeline adapted to this problem, covering all steps from the preprocessing of the datasets to the generation of classification models based on CNNs. Secondly, we have focused our study on the modification of the information fusion processes of this type of architectures, in the pooling layers. We propose a number of aggregation theory functions that are suitable to replace classical processes and have shown their benefits in past applications, and study their performance in the context of the x-ray classification problem. We find that replacing the feature reduction processes of CNNs leads to drastically different behaviours of the final model, which can be beneficial when prioritizing certain metrics such as precision or recall.
  • PublicationOpen Access
    From restricted equivalence functions on Ln to similarity measures between fuzzy multisets
    (IEEE, 2023) Ferrero Jaurrieta, Mikel; Takáč, Zdenko; Rodríguez Martínez, Iosu; Marco Detchart, Cedric; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Restricted equivalence functions are well-known functions to compare two numbers in the interval between 0 and 1. Despite the numerous works studying the properties of restricted equivalence functions and their multiple applications as support for different similarity measures, an extension of these functions to an n-dimensional space is absent from the literature. In this paper, we present a novel contribution to the restricted equivalence function theory, allowing to compare multivalued elements. Specifically, we extend the notion of restricted equivalence functions from L to L n and present a new similarity construction on L n . Our proposal is tested in the context of color image anisotropic diffusion as an example of one of its many applications.
  • PublicationOpen Access
    De funciones de equivalencia restringida en Lⁿ a medidas de similitud entre multiconjuntos difusos
    (CAEPIA, 2024) Ferrero Jaurrieta, Mikel; Rodríguez Martínez, Iosu; Bernardini, Ángela; Fernández Fernández, Francisco Javier; López Molina, Carlos; Bustince Sola, Humberto; Takáč, Zdenko; Marco Detchart, Cedric; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Este artículo es un resumen del trabajo publicado en la revista IEEE Transactions on Fuzzy Systems. En este trabajo, presentamos una contribución a la teoría de las Funciones de Equivalencia Restringida (REF), que permite comparar elementos multivaluados. Extendemos el concepto de REF de L a Ln y presentamos una nueva construcción de similitud en Ln. A partir de esta filosofía se construyen medidas de similitud entre multiconjuntos difusos y se presenta un ejemplo aplicado en el contexto de la difusión anisotrópica de imágenes en color.