Rodríguez Martínez, Iosu
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Rodríguez Martínez
First Name
Iosu
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Modification of information reduction processes in Convolutional Neural Networks(2024) Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Herrera, Francisco; Takáč, Zdenko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaDuring the last decade, Deep Artificial Neural Networks have established themselves as the state-of-the-art solution for solving complex tasks such as image processing, time-series forecasting, or natural language processing. One of the most studied families of artificial neural network is that of Convolutional Neural Networks (CNNs), which can exploit the local information of data sources such as images by automatically extracting increasingly more complex features in a hierarchical manner. Although plenty of work has been dedicated to the introduction of more complex (or more efficient) model architectures of CNN; to solving the optimisation problems faced by them and accelerating training convergence; or to trying to interpret their inner workings as well as explaining their generated predictions, an important key aspect of these models is sometimes overlooked: that of feature fusion. Feature fusion appears in plenty of forms in CNNs. Feature downsampling is necessary in order to compress the intermediate representations generated by the model, while preserving the most relevant information, a process which also makes models robust to small shifts in the inputs. Combining different sources of data or different feature representations is also a recurrent problem in neural networks, which is usually taken care of by simply allowing the model to learn additional transformations in a supervised manner, increasing its parameter count. In this dissertation, we study the application of solutions of the Information Fusion field to better tackle these problems. In particular, we explore the use of aggregation functions which replace a set of input values by a suitable single representative. We study the most important properties of these functions in the context of CNN feature reduction, and present novel pooling and Global Pooling proposals inspired by our discoveries. We also test the suitability of our proposals for the detection of COVID-19 patients, presenting an end-to-end pipeline which automatically analyses chest x-ray images.Publication Open Access A study on the suitability of different pooling operators for convolutional neural networks in the prediction of COVID-19 through chest x-ray image analysis(Elsevier, 2024) Rodríguez Martínez, Iosu; Ursúa Medrano, Pablo; Fernández Fernández, Francisco Javier; Takáč, Zdenko; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe 2019 coronavirus disease outbreak, caused by the severe acute respiratory syndrome type-2 virus (SARS-CoV-2), was declared a pandemic in March 2020. Since its emergence to the present day, this disease has brought multiple countries to the brink of health care collapse during several waves of the disease. One of the most common tests performed on patients is chest x-ray imaging. These images show the severity of the patient's illness and whether it is indeed covid or another type of pneumonia. Automated assessment of this type of imaging could alleviate the time required for physicians to treat and diagnose each patient. To this end, in this paper we propose the use of Convolutional Neural Networks (CNNs) to carry out this process. The aim of this paper is twofold. Firstly, we present a pipeline adapted to this problem, covering all steps from the preprocessing of the datasets to the generation of classification models based on CNNs. Secondly, we have focused our study on the modification of the information fusion processes of this type of architectures, in the pooling layers. We propose a number of aggregation theory functions that are suitable to replace classical processes and have shown their benefits in past applications, and study their performance in the context of the x-ray classification problem. We find that replacing the feature reduction processes of CNNs leads to drastically different behaviours of the final model, which can be beneficial when prioritizing certain metrics such as precision or recall.