Person: Rodríguez Martínez, Iosu
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Rodríguez Martínez
First Name
Iosu
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ORCID
0000-0002-9960-0203
person.page.upna
811655
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Modification of information reduction processes in Convolutional Neural Networks(2024) Rodríguez Martínez, Iosu; Bustince Sola, Humberto; Herrera, Francisco; Takac, Zdenko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaDuring the last decade, Deep Artificial Neural Networks have established themselves as the state-of-the-art solution for solving complex tasks such as image processing, time-series forecasting, or natural language processing. One of the most studied families of artificial neural network is that of Convolutional Neural Networks (CNNs), which can exploit the local information of data sources such as images by automatically extracting increasingly more complex features in a hierarchical manner. Although plenty of work has been dedicated to the introduction of more complex (or more efficient) model architectures of CNN; to solving the optimisation problems faced by them and accelerating training convergence; or to trying to interpret their inner workings as well as explaining their generated predictions, an important key aspect of these models is sometimes overlooked: that of feature fusion. Feature fusion appears in plenty of forms in CNNs. Feature downsampling is necessary in order to compress the intermediate representations generated by the model, while preserving the most relevant information, a process which also makes models robust to small shifts in the inputs. Combining different sources of data or different feature representations is also a recurrent problem in neural networks, which is usually taken care of by simply allowing the model to learn additional transformations in a supervised manner, increasing its parameter count. In this dissertation, we study the application of solutions of the Information Fusion field to better tackle these problems. In particular, we explore the use of aggregation functions which replace a set of input values by a suitable single representative. We study the most important properties of these functions in the context of CNN feature reduction, and present novel pooling and Global Pooling proposals inspired by our discoveries. We also test the suitability of our proposals for the detection of COVID-19 patients, presenting an end-to-end pipeline which automatically analyses chest x-ray images.Publication Open Access Replacing pooling functions in convolutional neural networks by linear combinations of increasing functions(Elsevier, 2022) Rodríguez Martínez, Iosu; Lafuente López, Julio; Santiago, Regivan; Pereira Dimuro, Graçaliz; Herrera, Francisco; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako GobernuaTraditionally, Convolutional Neural Networks make use of the maximum or arithmetic mean in order to reduce the features extracted by convolutional layers in a downsampling process known as pooling. However, there is no strong argument to settle upon one of the two functions and, in practice, this selection turns to be problem dependent. Further, both of these options ignore possible dependencies among the data. We believe that a combination of both of these functions, as well as of additional ones which may retain different information, can benefit the feature extraction process. In this work, we replace traditional pooling by several alternative functions. In particular, we consider linear combinations of order statistics and generalizations of the Sugeno integral, extending the latter¿s domain to the whole real line and setting the theoretical base for their application. We present an alternative pooling layer based on this strategy which we name ¿CombPool¿ layer. We replace the pooling layers of three different architectures of increasing complexity by CombPool layers, and empirically prove over multiple datasets that linear combinations outperform traditional pooling functions in most cases. Further, combinations with either the Sugeno integral or one of its generalizations usually yield the best results, proving a strong candidate to apply in most architectures.