Santesteban García, Gonzaga
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Santesteban García
First Name
Gonzaga
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
50 results
Search Results
Now showing 1 - 10 of 50
Publication Open Access Sampling stratification using aerial imagery to estimate fruit load in peach tree orchards(MDPI, 2018) Miranda Jiménez, Carlos; Santesteban García, Gonzaga; Urrestarazu Vidart, Jorge; Loidi Erviti, Maite; Royo Díaz, José Bernardo; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraA quick and accurate sampling method for determining yield in peach orchards could lead to better crop management decisions, more accurate insurance claim adjustment, and reduced expenses for the insurance industry. Given that sample size depends exclusively on the variability of the trees on the orchard, it is necessary to have a quick and objective way of assessing this variability. The aim of this study was to use remote sensing to detect the spatial variability within peach orchards and classify trees into homogeneous zones that constitute sampling strata to decrease sample size. Five mature peach orchards with different degrees of spatial variability were used. A regular grid of trees was established on each orchard, their trunk cross-sectional area (TCSA) was measured, and yield was measured as number of fruits/tree on the central tree of each one of them. Red Vegetation Index (RVI) was calculated from aerial images with 0.25 m pixel -1 resolution, and used, either alone or in combination with TCSA, to delineate sampling strata using cluster fuzzy k-means. Completely randomized (CRS) and stratified samplings were compared through 10,000 iterations, and the Minimum Sample Size required to obtain estimates of actual production for three quality levels of sampling was calculated in each case. The images allowed accurate determination of the number of trees, allowing a proper application of completely randomized sampling designs. Tree size and the canopy density estimated by means of multispectral indices are complementary parameters suitable for orchard stratification, decreasing the sample size required to determine fruit count up to 20–35% compared to completely randomized samples.Publication Open Access Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo(Elsevier, 2023) Buesa, Ignacio; Torres Molina, Nazareth; Tortosa, Ignacio; Marín Ederra, Diana; Villa Llop, Ana; Douthe, Cyril; Santesteban García, Gonzaga; Medrano, H.; Escalona, José M.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABAchieving more environmentally sustainable vineyards, particularly regarding efficient water use, is paramount in semi-arid grape-growing regions. Rootstocks may be a possible strategy to address these challenges, but require a comprehensive evaluation of their effect on the scion, including ecophysiological traits. The objectives of this study were 1) to characterize the physiological response of Tempranillo cultivar grafted onto five commercial (1103 P, 110 R, 140Ru, 420 A, and SO4), and seven recently bred (RG2, RG3, RG4, RG6, RG7, RG8 and RG9) rootstocks and 2) to elucidate the relationships between agronomic and physiological traits conferred by grapevine rootstocks. This was carried out over three seasons (2018–2020) in a typical Mediterranean vineyard by determining water relations, leaf gas exchange, carbon isotope ratios and vegetative development and yield components. The results highlighted the different behaviour of ‘Tempranillo’ vines due to the rootstock effects on vine water status, photosynthetic performance, hydraulic conductance, vegetative growth and yield parameters. Overall, rootstocks inducing vigour and yield in the scion, such as 140Ru and RG8, showed higher leaf gas exchange rates and hydraulic conductance at the whole-plant level due to less negative water potentials, suggesting a higher water uptake and transport capacity than RG2, RG7 and RG9. The RG rootstocks showed a very wide range of ecophysiological responses, but only RG8 outperformed compared to the most widely used commercial rootstocks. Moreover, this response was modulated by the season and the block soil type, suggesting the importance of rootstock selection according to the edaphoclimatic conditions. Therefore, this study highlights the high potential of rootstocks to adapt to water scarcity by improving crop water productivity in vineyards and provides physiological insights for future studies and breeding programmes.Publication Open Access A water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar(IEEE, 2019) Quemada Mayoral, Carlos; García González, Cebrián; Iriarte Galarregui, Juan Carlos; Marín Ederra, Diana; Gastón Beraza, Diego; Miranda Jiménez, Carlos; Gonzalo García, Ramón; Maestrojuán Biurrun, Itziar; Santesteban García, Gonzaga; Ederra Urzainqui, Íñigo; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Agronomía, Biotecnología y Alimentación; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI025 VITHZ; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2016-000084 RAFFThis paper presents the real-time monitoring of a grapevine’s water content that flows up through the xylem tissue by means of a frequency-modulated continuous-wave (FMCW) radar. The application of an optimization process, based on the super-resolution multiple signal classification (MUSIC) algorithm, has enabled the reduction of the bandwidth required to discern the xylem water content, and thus the operating frequency, achieving a depth resolution of at least 3 mm. This design advantage has resulted in a significant step forward towards a real life application, allowing the use of fully-integrated off-the-shelf components in order to implement a completely portable low-power cost-effective radar at 23.1 GHz with a 3.4 GHz bandwidth. The sensor performance has been evaluated by means of three different experiments: irrigation cycles, day/night cycles and comparison between irrigation cycles at different temperatures. From the experimental results, it is possible to assert that the contactless sensor presented in this work is very sensitive to changes in the plant’s water content, differentiating between daytime and nighttime. In addition, it has been proved that temperature has a noticeable influence over the evapotranspiration, observing negative drying slopes of 5.62 mV/cycle and 6.28 mV/cycle at 23ºC and 26ºC respectively.Publication Embargo Upgrading and validating a soil water balance model to predict stem water potential in vineyards(Elsevier, 2024-12-15) Mirás-Ávalos, José M.; Escalona, José M.; Pérez-Álvarez, Eva Pilar; Romero Azorín, Pascual; Botia, Pablo; Navarro, Josefa; Torres Molina, Nazareth; Santesteban García, Gonzaga; Uriarte, David; Intrigliolo, Diego S.; Buesa, Ignacio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABEfficient water management is pivotal for viticulture sustainability. Decision support tools can advise on how to optimize irrigation or on the feasibility of growing grapes in rainfed conditions, but reliable algorithms for assessing vine water status are required. In this context, the aim of the current study was to upgrade a soil water balance model specific for vineyards by incorporating meteorological, soil and vine vigor in equations that transform the fraction of transpirable soil water into midday stem water potential (Ψstem). The model's sensitivity to variations in the magnitude of input parameters was analyzed. Furthermore, the model was tested in a broad scope of Spanish vineyards with different grapevine cultivars (both red and white), rootstocks, plant age, soil and climatic conditions, and water regimes, totaling 129 scenarios. The model was only slightly sensitive to variations in the magnitude of most inputs, except for the fraction of transpirable water at which leaf stomatal conductance begin to decline. Moreover, the model satisfactorily reproduced the evolution of Ψstem over the growing season, although it slightly overestimated the measured ¿stem values, as the slopes of the fitted regression lines were lesser than 1 on most occasions, 76 out of 129. Nonetheless, the coefficients of determination for these relationships were greater than 0.9, except for 21 datasets. Mean errors averaged 0.024 ± 0.015 MPa, while root mean square errors averaged 0.27 ± 0.01 MPa. The index of agreement was greater than 0.75 in 51 datasets, with only three datasets showing an index of agreement lower than 0.5. Nevertheless, the deviations between observed and simulated Ψstem values did not alter the classification of the water stress undergone by grapevines. This upgraded model could constitute the core of a decision support system for water management in vineyards, applicable to both rainfed and irrigated conditions.Publication Open Access Evaluating treatments for the protection of grapevine pruning wounds from natural infection by trunk disease fungi(American Phytopathological Society, 2024-09-19) Leal, Catarina; Bujanda, Rebeca; López-Manzanares, Beatriz; Ojeda, Sonia; Berbegal, Mónica; Villa Llop, Ana; Santesteban García, Gonzaga; Palacios Muruzábal, Julián; Gramaje, David; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraInfection of grapevines by fungal pathogens causing grapevine trunk diseases (GTDs) primarily arises from annual pruning wounds made during the dormant season. While various studies have showcased the efficacy of products in shielding pruning wounds against GTD infections, most of these investigations hinge on artificial pathogen inoculations, which may not faithfully mirror real field conditions. This study aimed to evaluate and compare the efficacy of various liquid formulation fungicides (pyraclostrobin + boscalid) and paste treatments, as well as biological control agents (BCA: Trichoderma atroviride SC1, T. atroviride I-1237, and T. asperellum ICC012 + T. gamsii ICC080), for their potential to prevent natural infection of grapevine pruning wounds by trunk disease fungi in two field trials located in Samaniego (Northern Spain) and Madiran (Southern France) over three growing seasons. Wound treatments were applied immediately after pruning in February. One year after pruning, canes were harvested from vines and brought to the laboratory for assessment of Trichoderma spp. and fungal trunk pathogens. More than 1,200 fungal isolates associated with five GTDs (esca, Botryosphaeria, Diaporthe and Eutypa diebacks, and Cytospora canker) were collected from the two vineyards each growing season. Our findings reveal that none of the products under investigation exhibited complete effectiveness against all the GTDs. The efficacy of these products was particularly influenced by the specific year of study. A notable exception was observed with the biocontrol agent T. atroviride I-1237, which consistently demonstrated effectiveness against Botryosphaeria dieback infections throughout each year of the study, irrespective of the location. The remaining products exhibited efficacy in specific years or locations against particular diseases, with the physical barrier (paste) showing the least overall effectiveness. The recovery rates of Trichoderma spp. in treated plants were highly variable, ranging from 17 to 100%, with both strains of T. atroviride yielding the highest isolation rates. This study underscores the importance of customizing treatments for specific diseases, taking into account the influence of environmental factors for BCA applications.Publication Open Access Agronomic evaluation of eight 41 B × 110 richter grapevine genotypes as rootstock candidates for mediterranean viticulture(KeAi Communications, 2023) Marín Ederra, Diana; Miranda Jiménez, Carlos; Abad Zamora, Francisco Javier; Urrestarazu Vidart, Jorge; Mayor Azcona, Blanca; Villa Llop, Ana; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaChoosing the most appropriate rootstock(s) is a key decision for the profitability of vineyards; therefore, there must be a sufficient range of rootstocks in the market adapted to different environmental conditions and production objectives. However, rootstock-breeding programs have been scarce in recent decades, and most of the rootstocks used today were bred a century ago, when the needs of the sector were very different from today. In this work, we aimed to evaluate new rootstock candidates before their introduction in the market. An agronomic evaluation was conducted on eight novel rootstock genotypes obtained from the first generation of the cross-pollination of 41 B Millardet et de Grasset (41 B) and 110 Richter (110 R) grafted with ‘Syrah’ and ‘Tempranillo’ and planted in a typical vineyard of the Ebro Valley in Spain. During the four consecutive growing seasons (2016e2019), growth, yield and berry composition parameters at harvest were collected. A linear mixedeffects model was constructed, considering year and block as random effects. Multiple factor analysis and hierarchical clustering on principal components were performed to establish clusters of genotypes with similar behaviour. The rootstock candidates showed a very wide performance range compared to their parents. The trial allowed us to identify two very promising candidates (RG8 and RG10), whose registration as commercial rootstocks is already in progress.Publication Open Access Cover crops in viticulture. A systematic review (2): Implications on vineyard agronomic performance(International Viticulture and Enology Society (IVES), 2021) Abad Zamora, Francisco Javier; Hermoso de Mendoza, Irantzu; Marín Ederra, Diana; Orcaray Echeverría, Luis; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraThe present systematic review aims to provide an overview of the impact of cover crops on vegetative growth and the productive parameters of vineyards. A systematic review was made on Scopus-index journals dating from 1999 to 2018. The selection was made at the same time by two different researchers, who selected a total of 272 published papers related to cover crops in vineyards. Each article was categorised according to its theme and a metadata database was created, considering all relevant information from an agronomic point of view for each article. It can be concluded from the review that the use of cover crops can reduce vine vegetative growth, which in turn can help keep the incidence of fungal diseases (like grey mould) at a low level. In general, this practice does not have a clear effect on vineyard yield or grape juice parameters, like total soluble solids (TSS) or titratable acidity (TA). Cover crops can decrease vineyard pests to a certain extent, especially Cicadellidae. Cover crops can sometimes sporadically cause water stress in the vineyard, but only during the summer months. This review allowed us to summarise available information on cover crops and their effects on vineyard agronomic performance in a systematic way. Such information can be used to help select the most suitable cover, based on specific vineyard objectives and growing conditions.Publication Open Access Quantifying the effects of water status on grapevine vegetative growth, yield, and grape composition through a collaborative analysis(Wiley, 2025-05-14) Contreras Uriarte, David; Santesteban García, Gonzaga; Mirás-Ávalos, José M.; Buesa, Ignacio; Cancela, Javier José; Chacón, Juan Luis; Escalona, José M.; Intrigliolo, Diego S.; Lampreave, Miriam; Montoro, Amelia; Rivacoba Gómez, Luis; Visconti, Fernando; Yuste, Jesús; Miranda Jiménez, Carlos; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraThe consolidation of scientific knowledge is based on the accumulation and understanding of previous findings. Nowadays, reviews of the scientific literature have become more effective through the use of meta-analyses, which are systematic evaluations of the results from multiple studies. Similarly, mega-analyses, which combine raw data from many studies into a single sample for processing and statistical analysis, are a very powerful tool for analyzing results of heterogeneous origin but require a high level of collaboration between the researchers contributing data. In the framework of a collaborative methodology between different Spanish viticultural research groups, this work uses a mega-analytical approach to quantify the effects of changes in vine water status on vine vegetative growth, yield, and grape composition, integrating a wide range of growing conditions to obtain robust general trends of vine performance under water deficit. The mean seasonal stem water potential data from the different studies allowed a classification into five levels of water status (no deficit ⟶ mild ⟶ moderate ⟶ high ⟶ severe). A progressive decrease in vegetative growth with increasing deficit was observed, while yield decreased more markedly as water deficit progressed from moderate to high. On the other hand, titratable acidity was more sensitive to variation in water status than sugar concentration, with a greater decrease in titratable acidity when changing from no to moderate deficit. Conversely, increasing water deficit from moderate to high resulted in the greatest increases in grape anthocyanin in the red varieties explored. The results obtained in this work provide solid information on general trends in grapevine response to water deficit that can be used in simulation models or incorporated by grape growers in their decision-making processes in relation not only to irrigation management but also on other agronomic tools to impact grapevine water status.Publication Open Access Recovery of ancient grapevine plant material in peri‑urban areas. A case of success in Pamplona (Spain) leading to the recovery of cv. Berués(Elsevier, 2022) Crespo Martínez, Sara; Mayor Azcona, Blanca; Oneka Mugica, Oihane; Loidi Erviti, Maite; Villa Llop, Ana; Marín Ederra, Diana; Miranda Jiménez, Carlos; Santesteban García, Gonzaga; Urrestarazu Vidart, Jorge; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación; Gobierno de Navarra / Nafarroako GobernuaViticulture was relatively important in the peri‑urban area of Pamplona till the end of the 19th century, but suffered a continued regression that has led to a nearly complete disappearance of vineyards. In this context, this work aims to evaluate the feasibility of recovering old grapevine germplasm in the peri‑urban area of Pamplona. The lack of a conventional source for recovering plant material (i.e. absence of old vineyards in the area) implied the need of designing an alternative prospecting procedure. This method included the analysis of the available historical information as open-access resources (orthophotos, land use maps and GIS applications) aiming to identify the areas with the highest probability of finding vines surviving from the general abandonment and uprooting of vineyards that had occurred in the 20th century. Based on the oldest on scale orthophoto available for Navarra, a vineyard land map of the peri‑urban area of Pamplona in year 1956 was built, allowing prospecting efforts to be focused on specific areas of primarily interest. Following this strategy, a total of 120 plants were collected, which corresponded to 44 genotypes. The most prominent achievement of this prospecting mission was the recovery of 15 accessions of Berués, a very old variety with a remarkable importance in the region according to old historical records, and considered to be disappeared. The methodology proposed was effective in searching for the oldest standing-alone plants surviving in the peri‑urban area of Pamplona, and may be adapted to assist the recovery of old grapevine germplasm in other currently non wine-growing regions/areas where viticulture was relevant some decades ago. © 2021Publication Open Access Cubierta vegetal bajo las cepas: una alternativa al control de las malas hierbas en los viñedos(INTIA (Tecnologías e Infraestructuras Agroalimentarias), 2023) Abad Zamora, Francisco Javier; Cibriain Sabalza, Félix; Sagüés Sarasa, Ana; Santesteban García, Gonzaga; Lezáun San Martín, Juan Antonio; Fabo Boneta, Jesús María; Virto Quecedo, Íñigo; Imbert Rodríguez, Bosco; Marín Arroyo, Remedios; Garbisu Crespo, Carlos; Ciencias; Zientziak; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOODEn este artículo se presentan los resultados obtenidos con una cubierta vegetal de trébol sembrada bajo las cepas para competir con las malas hierbas, de manera que no sea necesario recurrir al empleo de herbicidas o laboreos intercepas.