Santesteban García, Gonzaga

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Santesteban García

First Name

Gonzaga

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 56
  • PublicationOpen Access
    Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo
    (Elsevier, 2023) Buesa, Ignacio; Torres Molina, Nazareth; Tortosa, Ignacio; Marín Ederra, Diana; Villa Llop, Ana; Douthe, Cyril; Santesteban García, Gonzaga; Medrano, H.; Escalona, José M.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Achieving more environmentally sustainable vineyards, particularly regarding efficient water use, is paramount in semi-arid grape-growing regions. Rootstocks may be a possible strategy to address these challenges, but require a comprehensive evaluation of their effect on the scion, including ecophysiological traits. The objectives of this study were 1) to characterize the physiological response of Tempranillo cultivar grafted onto five commercial (1103 P, 110 R, 140Ru, 420 A, and SO4), and seven recently bred (RG2, RG3, RG4, RG6, RG7, RG8 and RG9) rootstocks and 2) to elucidate the relationships between agronomic and physiological traits conferred by grapevine rootstocks. This was carried out over three seasons (2018–2020) in a typical Mediterranean vineyard by determining water relations, leaf gas exchange, carbon isotope ratios and vegetative development and yield components. The results highlighted the different behaviour of ‘Tempranillo’ vines due to the rootstock effects on vine water status, photosynthetic performance, hydraulic conductance, vegetative growth and yield parameters. Overall, rootstocks inducing vigour and yield in the scion, such as 140Ru and RG8, showed higher leaf gas exchange rates and hydraulic conductance at the whole-plant level due to less negative water potentials, suggesting a higher water uptake and transport capacity than RG2, RG7 and RG9. The RG rootstocks showed a very wide range of ecophysiological responses, but only RG8 outperformed compared to the most widely used commercial rootstocks. Moreover, this response was modulated by the season and the block soil type, suggesting the importance of rootstock selection according to the edaphoclimatic conditions. Therefore, this study highlights the high potential of rootstocks to adapt to water scarcity by improving crop water productivity in vineyards and provides physiological insights for future studies and breeding programmes.
  • PublicationOpen Access
    A water content continuous monitoring of grapevine xylem tissue using a portable low-power cost-effective FMCW radar
    (IEEE, 2019) Quemada Mayoral, Carlos; García González, Cebrián; Iriarte Galarregui, Juan Carlos; Marín Ederra, Diana; Gastón Beraza, Diego; Miranda Jiménez, Carlos; Gonzalo García, Ramón; Maestrojuán Biurrun, Itziar; Santesteban García, Gonzaga; Ederra Urzainqui, Íñigo; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Agronomía, Biotecnología y Alimentación; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, PI025 VITHZ; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2016-000084 RAFF
    This paper presents the real-time monitoring of a grapevine’s water content that flows up through the xylem tissue by means of a frequency-modulated continuous-wave (FMCW) radar. The application of an optimization process, based on the super-resolution multiple signal classification (MUSIC) algorithm, has enabled the reduction of the bandwidth required to discern the xylem water content, and thus the operating frequency, achieving a depth resolution of at least 3 mm. This design advantage has resulted in a significant step forward towards a real life application, allowing the use of fully-integrated off-the-shelf components in order to implement a completely portable low-power cost-effective radar at 23.1 GHz with a 3.4 GHz bandwidth. The sensor performance has been evaluated by means of three different experiments: irrigation cycles, day/night cycles and comparison between irrigation cycles at different temperatures. From the experimental results, it is possible to assert that the contactless sensor presented in this work is very sensitive to changes in the plant’s water content, differentiating between daytime and nighttime. In addition, it has been proved that temperature has a noticeable influence over the evapotranspiration, observing negative drying slopes of 5.62 mV/cycle and 6.28 mV/cycle at 23ºC and 26ºC respectively.
  • PublicationOpen Access
    Methods to compare the spatial variability of UAV-based spectral and geometric information with ground autocorrelated data: a case of study for precision viticulture
    (Elsevier, 2019-05-24) Matese, Alessandro; Di Gennaro, Salvatore Filippo; Santesteban García, Gonzaga; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Gobierno de Navarra / Nafarroako Gobernua
    One of the key steps that would lead winegrowers to implement precision viticulture as a management tool would be the clear demonstration of the agronomic and oenological significance of the zones delineated within a vineyard based, totally or partially, on remote-acquired information. To perform this analysis, it is necessary to compare image-derived variables to crop characteristics. Classical ordinary least square (OLS) regression is not well suit for spatially structured data, while Moran’s index (MI) and local indicators of spatial autocorrelation (LISA) take autocorrelation into account. The aim of this work was to evaluate the performance of statistical methods to compare different maps of a vineyard, some including variables derived from UAV acquired imagery, and some from in situ ground characterization. The study was conducted during 2015 and 2016 seasons in an adult 7.5 ha cv. ‘Tempranillo’ vineyard located in Traibuenas, Navarra, Spain. The maps obtained out of UAV-imagery, volume index (VI) and normalized difference vegetation index (NDVI) were compared to the maps obtained for the agronomic variables measured (yield, berry weight and total soluble solids). The bivariate MI and the bivariate LISA cluster map obtained using Geoda software indicate depict the spatial cluster association between variables in 2015 and 2016 with different types of local spatial autocorrelation. The use of these methods that take into account data spatial structure, to compare ground autocorrelated data and spectral and geometric information derived from UAV-acquired imagery has been proved to be highly necessary and advisable.
  • PublicationOpen Access
    Intracultivar genetic diversity in grapevine: water use efficiency variability within cv. Grenache
    (Wiley, 2021) Buesa, Ignacio; Escalona, José M.; Tortosa, Ignacio; Marín Ederra, Diana; Loidi Erviti, Maite; Santesteban García, Gonzaga; Douthe, Cyril; Medrano, H.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    The selection of genotypes best adapted to environmental conditions has traditionally focused on agronomic and grape composition parameters. However, to classify the genotypes most adapted to climate change conditions, the aim must be to focus on the ecophysiological responses that will ultimately determine their performance. The variability in water use efficiency of 13 Grenache genotypes over three-seasons was assessed under field conditions at leaf, grape and plant level. Results showed a significant effect of genotype at all three levels, and despite the large interannual variability there was a remarkable consistency among levels. Furthermore, using genotype-specific regressions it was possible to identify significant differences in the intrinsic water use efficiency response of each genotype as a function of the vine water status. The relationship between net photosynthesis and stomatal conductance, as well as carbon isotope discrimination in grapes, were also confirmed as reliable physiological indicators for selecting grapevine genotypes to future environmental conditions. Therefore, the proposed multi-level methodology was useful to quantify the intracultivar variability and the identification of more and less efficient genotypes within Grenache.
  • PublicationOpen Access
    Evaluating treatments for the protection of grapevine pruning wounds from natural infection by trunk disease fungi
    (American Phytopathological Society, 2024-09-19) Leal, Catarina; Bujanda, Rebeca; López-Manzanares, Beatriz; Ojeda, Sonia; Berbegal, Mónica; Villa Llop, Ana; Santesteban García, Gonzaga; Palacios Muruzábal, Julián; Gramaje, David; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Infection of grapevines by fungal pathogens causing grapevine trunk diseases (GTDs) primarily arises from annual pruning wounds made during the dormant season. While various studies have showcased the efficacy of products in shielding pruning wounds against GTD infections, most of these investigations hinge on artificial pathogen inoculations, which may not faithfully mirror real field conditions. This study aimed to evaluate and compare the efficacy of various liquid formulation fungicides (pyraclostrobin + boscalid) and paste treatments, as well as biological control agents (BCA: Trichoderma atroviride SC1, T. atroviride I-1237, and T. asperellum ICC012 + T. gamsii ICC080), for their potential to prevent natural infection of grapevine pruning wounds by trunk disease fungi in two field trials located in Samaniego (Northern Spain) and Madiran (Southern France) over three growing seasons. Wound treatments were applied immediately after pruning in February. One year after pruning, canes were harvested from vines and brought to the laboratory for assessment of Trichoderma spp. and fungal trunk pathogens. More than 1,200 fungal isolates associated with five GTDs (esca, Botryosphaeria, Diaporthe and Eutypa diebacks, and Cytospora canker) were collected from the two vineyards each growing season. Our findings reveal that none of the products under investigation exhibited complete effectiveness against all the GTDs. The efficacy of these products was particularly influenced by the specific year of study. A notable exception was observed with the biocontrol agent T. atroviride I-1237, which consistently demonstrated effectiveness against Botryosphaeria dieback infections throughout each year of the study, irrespective of the location. The remaining products exhibited efficacy in specific years or locations against particular diseases, with the physical barrier (paste) showing the least overall effectiveness. The recovery rates of Trichoderma spp. in treated plants were highly variable, ranging from 17 to 100%, with both strains of T. atroviride yielding the highest isolation rates. This study underscores the importance of customizing treatments for specific diseases, taking into account the influence of environmental factors for BCA applications.
  • PublicationEmbargo
    Upgrading and validating a soil water balance model to predict stem water potential in vineyards
    (Elsevier, 2024-12-15) Mirás-Ávalos, José M.; Escalona, José M.; Pérez-Álvarez, Eva Pilar; Romero Azorín, Pascual; Botia, Pablo; Navarro, Josefa; Torres Molina, Nazareth; Santesteban García, Gonzaga; Uriarte, David; Intrigliolo, Diego S.; Buesa, Ignacio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Efficient water management is pivotal for viticulture sustainability. Decision support tools can advise on how to optimize irrigation or on the feasibility of growing grapes in rainfed conditions, but reliable algorithms for assessing vine water status are required. In this context, the aim of the current study was to upgrade a soil water balance model specific for vineyards by incorporating meteorological, soil and vine vigor in equations that transform the fraction of transpirable soil water into midday stem water potential (Ψstem). The model's sensitivity to variations in the magnitude of input parameters was analyzed. Furthermore, the model was tested in a broad scope of Spanish vineyards with different grapevine cultivars (both red and white), rootstocks, plant age, soil and climatic conditions, and water regimes, totaling 129 scenarios. The model was only slightly sensitive to variations in the magnitude of most inputs, except for the fraction of transpirable water at which leaf stomatal conductance begin to decline. Moreover, the model satisfactorily reproduced the evolution of Ψstem over the growing season, although it slightly overestimated the measured ¿stem values, as the slopes of the fitted regression lines were lesser than 1 on most occasions, 76 out of 129. Nonetheless, the coefficients of determination for these relationships were greater than 0.9, except for 21 datasets. Mean errors averaged 0.024 ± 0.015 MPa, while root mean square errors averaged 0.27 ± 0.01 MPa. The index of agreement was greater than 0.75 in 51 datasets, with only three datasets showing an index of agreement lower than 0.5. Nevertheless, the deviations between observed and simulated Ψstem values did not alter the classification of the water stress undergone by grapevines. This upgraded model could constitute the core of a decision support system for water management in vineyards, applicable to both rainfed and irrigated conditions.
  • PublicationOpen Access
    Sampling stratification using aerial imagery to estimate fruit load in peach tree orchards
    (MDPI, 2018) Miranda Jiménez, Carlos; Santesteban García, Gonzaga; Urrestarazu Vidart, Jorge; Loidi Erviti, Maite; Royo Díaz, José Bernardo; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    A quick and accurate sampling method for determining yield in peach orchards could lead to better crop management decisions, more accurate insurance claim adjustment, and reduced expenses for the insurance industry. Given that sample size depends exclusively on the variability of the trees on the orchard, it is necessary to have a quick and objective way of assessing this variability. The aim of this study was to use remote sensing to detect the spatial variability within peach orchards and classify trees into homogeneous zones that constitute sampling strata to decrease sample size. Five mature peach orchards with different degrees of spatial variability were used. A regular grid of trees was established on each orchard, their trunk cross-sectional area (TCSA) was measured, and yield was measured as number of fruits/tree on the central tree of each one of them. Red Vegetation Index (RVI) was calculated from aerial images with 0.25 m pixel -1 resolution, and used, either alone or in combination with TCSA, to delineate sampling strata using cluster fuzzy k-means. Completely randomized (CRS) and stratified samplings were compared through 10,000 iterations, and the Minimum Sample Size required to obtain estimates of actual production for three quality levels of sampling was calculated in each case. The images allowed accurate determination of the number of trees, allowing a proper application of completely randomized sampling designs. Tree size and the canopy density estimated by means of multispectral indices are complementary parameters suitable for orchard stratification, decreasing the sample size required to determine fruit count up to 20–35% compared to completely randomized samples.
  • PublicationOpen Access
    Quantifying the effects of water status on grapevine vegetative growth, yield, and grape composition through a collaborative analysis
    (Wiley, 2025-05-14) Contreras Uriarte, David; Santesteban García, Gonzaga; Mirás-Ávalos, José M.; Buesa, Ignacio; Cancela, Javier José; Chacón, Juan Luis; Escalona, José M.; Intrigliolo, Diego S.; Lampreave, Miriam; Montoro, Amelia; Rivacoba Gómez, Luis; Visconti, Fernando; Yuste, Jesús; Miranda Jiménez, Carlos; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    The consolidation of scientific knowledge is based on the accumulation and understanding of previous findings. Nowadays, reviews of the scientific literature have become more effective through the use of meta-analyses, which are systematic evaluations of the results from multiple studies. Similarly, mega-analyses, which combine raw data from many studies into a single sample for processing and statistical analysis, are a very powerful tool for analyzing results of heterogeneous origin but require a high level of collaboration between the researchers contributing data. In the framework of a collaborative methodology between different Spanish viticultural research groups, this work uses a mega-analytical approach to quantify the effects of changes in vine water status on vine vegetative growth, yield, and grape composition, integrating a wide range of growing conditions to obtain robust general trends of vine performance under water deficit. The mean seasonal stem water potential data from the different studies allowed a classification into five levels of water status (no deficit ⟶ mild ⟶ moderate ⟶ high ⟶ severe). A progressive decrease in vegetative growth with increasing deficit was observed, while yield decreased more markedly as water deficit progressed from moderate to high. On the other hand, titratable acidity was more sensitive to variation in water status than sugar concentration, with a greater decrease in titratable acidity when changing from no to moderate deficit. Conversely, increasing water deficit from moderate to high resulted in the greatest increases in grape anthocyanin in the red varieties explored. The results obtained in this work provide solid information on general trends in grapevine response to water deficit that can be used in simulation models or incorporated by grape growers in their decision-making processes in relation not only to irrigation management but also on other agronomic tools to impact grapevine water status.
  • PublicationOpen Access
    Recovery of ancient grapevine plant material in peri‑urban areas. A case of success in Pamplona (Spain) leading to the recovery of cv. Berués
    (Elsevier, 2022) Crespo Martínez, Sara; Mayor Azcona, Blanca; Oneka Mugica, Oihane; Loidi Erviti, Maite; Villa Llop, Ana; Marín Ederra, Diana; Miranda Jiménez, Carlos; Santesteban García, Gonzaga; Urrestarazu Vidart, Jorge; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Agronomía, Biotecnología y Alimentación; Gobierno de Navarra / Nafarroako Gobernua
    Viticulture was relatively important in the peri‑urban area of Pamplona till the end of the 19th century, but suffered a continued regression that has led to a nearly complete disappearance of vineyards. In this context, this work aims to evaluate the feasibility of recovering old grapevine germplasm in the peri‑urban area of Pamplona. The lack of a conventional source for recovering plant material (i.e. absence of old vineyards in the area) implied the need of designing an alternative prospecting procedure. This method included the analysis of the available historical information as open-access resources (orthophotos, land use maps and GIS applications) aiming to identify the areas with the highest probability of finding vines surviving from the general abandonment and uprooting of vineyards that had occurred in the 20th century. Based on the oldest on scale orthophoto available for Navarra, a vineyard land map of the peri‑urban area of Pamplona in year 1956 was built, allowing prospecting efforts to be focused on specific areas of primarily interest. Following this strategy, a total of 120 plants were collected, which corresponded to 44 genotypes. The most prominent achievement of this prospecting mission was the recovery of 15 accessions of Berués, a very old variety with a remarkable importance in the region according to old historical records, and considered to be disappeared. The methodology proposed was effective in searching for the oldest standing-alone plants surviving in the peri‑urban area of Pamplona, and may be adapted to assist the recovery of old grapevine germplasm in other currently non wine-growing regions/areas where viticulture was relevant some decades ago. © 2021
  • PublicationOpen Access
    Cubierta vegetal bajo las cepas: una alternativa al control de las malas hierbas en los viñedos
    (INTIA (Tecnologías e Infraestructuras Agroalimentarias), 2023) Abad Zamora, Francisco Javier; Cibriain Sabalza, Félix; Sagüés Sarasa, Ana; Santesteban García, Gonzaga; Lezáun San Martín, Juan Antonio; Fabo Boneta, Jesús María; Virto Quecedo, Íñigo; Imbert Rodríguez, Bosco; Marín Arroyo, Remedios; Garbisu Crespo, Carlos; Ciencias; Zientziak; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD
    En este artículo se presentan los resultados obtenidos con una cubierta vegetal de trébol sembrada bajo las cepas para competir con las malas hierbas, de manera que no sea necesario recurrir al empleo de herbicidas o laboreos intercepas.