Elso Torralba, Jorge

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Elso Torralba

First Name

Jorge

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Automatic synthesis of feedforward elements in quantitative feedback theory
    (Wiley, 2021) Elso Torralba, Jorge; Ostolaza, J. Xabier; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Recent developments in quantitative feedback theory (QFT) lead to feedforward design problems with both magnitude and phase constraints. In these cases, manual feedforward tuning becomes much more challenging and time consuming than the traditional prefilter shaping taking place on the Bode plot. This article presents a general procedure for the automatic synthesis of such elements. Feedforward bounds in the complex plane are expressed as constraints of a linear programming problem in which the Bode real-complex relation is implicitly considered, ensuring a stable rational solution. The methodology is successfully tested in a well-known benchmark problem.
  • PublicationOpen Access
    Multivariable QFT control of the direction flip problem in wire arc additive manufacturing
    (Wiley, 2025-04-25) Masenlle, Manuel; Elso Torralba, Jorge; Ostolaza, J. Xabier; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC
    Additive metal manufacturing (AM), particularly Wire Arc Additive Manufacturing (WAAM), offers a compelling alternative to traditional machining methods. While AM presents advantages such as reduced material waste and lower production costs, challenges remain in effectively controlling the process to prevent defects and optimise material deposition. This article proposes a multivariable control system for WAAM utilising Quantitative Feedback Theory (QFT) to maintain the shape of the heat-affected zone (HAZ) during transitions in direction flips during layer deposition. By modelling these direction flips as predictable disturbances, the full potential of QFT to integrate feedback and feedforward actions is exploited. The resulting multivariable control laws seek to minimise temperature variation in two critical points around the welding pool by adequately manipulating the power and speed of the heat source. A benchmark system is established to evaluate the effectiveness of the proposed control system. The results demonstrate significant improvement in temperature control, leading to enhanced layer construction quality and reduced need for height corrections or cooling pauses.