Gómez Fernández, Marisol

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gómez Fernández

First Name

Marisol

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 23
  • PublicationOpen Access
    MEANSP: How many channels are needed to predict the performance of a SMR-Based BCI?
    (IEEE, 2023) Jorajuria Gómez, Tania; Nikulin, Vadim V.; Kapralov, Nikolai; Gómez Fernández, Marisol; Vidaurre Arbizu, Carmen; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Predicting whether a particular individual would reach an adequate control of a Brain-Computer Interface (BCI) has many practical advantages. On the one hand, participants with low predicted performance could be trained with specifically designed sessions and avoid frustrating experiments; on the other hand, planning time and resources would be more efficient; and finally, the variables related to an accurate prediction could be manipulated to improve the prospective BCI performance. To this end, several predictors have been proposed in the literature, most of them based on the power estimation of EEG signals at the specific frequency bands. Many of these studies evaluate their predictors in relatively small datasets and/or using a relatively high number of channels. In this manuscript, we propose a novel predictor called MEANSP to predict the performance of participants using BCIs that are based on the modulation of sensorimotor rhythms. This novel predictor has been positively evaluated using only 2, 3, 4 or 5 channels. MEANSP has shown to perform as well as or better than other state-of-the-art predictors. The best sets of different number of channels are also provided, which have been tested in two different settings to prove their robustness. The proposed predictor has been successfully evaluated using two large-scale datasets containing 150 and 80 participants, respectively. We also discuss predictor thresholds for users to expect good performance in feedback experiments and show the advantages in comparison to a competing algorithm.
  • PublicationOpen Access
    Oscillatory source tensor discriminant analysis (OSTDA): a regularized tensor pipeline for SSVEP-based BCI systems
    (Elsevier, 2021) Jorajuria Gómez, Tania; Jamshidi Idaji, Mina; İşcan, Zafer; Gómez Fernández, Marisol; Nikulin, Vadim V.; Vidaurre Arbizu, Carmen; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Periodic signals called Steady-State Visual Evoked Potentials (SSVEP) are elicited in the brain by flickering stimuli. They are usually detected by means of regression techniques that need relatively long trial lengths to provide feedback and/or sufficient number of calibration trials to be reliably estimated in the context of brain-computer interface (BCI). Thus, for BCI systems designed to operate with SSVEP signals, reliability is achieved at the expense of speed or extra recording time. Furthermore, regardless of the trial length, calibration free regression-based methods have been shown to suffer from significant performance drops when cognitive perturbations are present affecting the attention to the flickering stimuli. In this study we present a novel technique called Oscillatory Source Tensor Discriminant Analysis (OSTDA) that extracts oscillatory sources and classifies them using the newly developed tensor-based discriminant analysis with shrinkage. The proposed approach is robust for small sample size settings where only a few calibration trials are available. Besides, it works well with both low- and high-number-of-channel settings, using trials as short as one second. OSTDA performs similarly or significantly better than other three benchmarked state-of-the-art techniques under different experimental settings, including those with cognitive disturbances (i.e. four datasets with control, listening, speaking and thinking conditions). Overall, in this paper we show that OSTDA is the only pipeline among all the studied ones that can achieve optimal results in all analyzed conditions.
  • PublicationOpen Access
    Construction of uninorms on bounded lattices: a closer look into the structure of the set of elements incomparable with the neutral element
    (Taylor & Francis, 2025-05-26) Goñi Medrano, Ander; Gómez Fernández, Marisol; Pérez Fernández, Raúl; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Publica de Navarra / Nafarroako Unibertsitate Publikoa
    In recent years, the construction and characterization of certain uninorms on bounded lattices have been exhaustively studied. In this paper, we study the structure of the set of elements incomparable with the neutral element, and provide a taxonomy of different types of bounded lattices. Moreover, we present different methods for constructing uninorms on some of these types of bounded lattices. The presented construction methods extend existing construction methods in the sense that the constructed uninorm may take a more general range of values on the set of elements incomparable with the neutral element.
  • PublicationOpen Access
    Optical system based on multiplexed FBGs to monitor hand movements
    (IEEE, 2021) Socorro Leránoz, Abián Bentor; Díaz Lucas, Silvia; Castillo, Silvia; Dreyer, Uilian José; Martelli, Cicero; Cardozo da Silva, Jean Carlos; Uzqueda Esteban, Itziar; Gómez Fernández, Marisol; Ruiz Zamarreño, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua
    This contribution reports the development and characterization of an optical system based on parallel Fiber Bragg Gratings (FBGs) to monitor the movements of the wrist and fingers of a hand. The system consisted of a reflective configuration made of FBGs detecting the movements of the fingers and one more located on the wrist as a reference. All FBGs were multiplexed in order to collect the basic movements of the hand. Fibers were embedded in polydimethylsiloxane for protection and to give flexibility to the optical detection setup. Measurements of strain, angle and torsion were performed during the experiments, obtaining sensitivities up to 1.29 pm/ \mu \varepsilon in strain and 64.23 pm/° in angle. Also, a study on the influence of a single sensor on the performance of the whole system was analyzed for a complete study of this proof of concept. The obtained results present a simple system that can be used to monitor the positions of the hand or for the rehabilitation of patients suffering from neuromotor or post-stroke diseases.
  • PublicationOpen Access
    An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit
    (BioMed Central, 2013) Millor Muruzábal, Nora; Lecumberri Villamediana, Pablo; Gómez Fernández, Marisol; Martínez Ramírez, Alicia; Izquierdo Redín, Mikel; Matemáticas; Ciencias de la Salud; Matematika; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Background: A growing interest in frailty syndrome exists because it is regarded as a major predictor of co-morbidities and mortality in older populations. Nevertheless, frailty assessment has been controversial, particularly when identifying this syndrome in a community setting. Performance tests such as the 30-second chair stand test (30-s CST) are a cornerstone for detecting early declines in functional independence. Additionally, recent advances in body-fixed sensors have enhanced the sensors’ ability to automatically and accurately evaluate kinematic parameters related to a specific movement performance. The purpose of this study is to use this new technology to obtain kinematic parameters that can identify frailty in an aged population through the performance the 30-s CST. Methods: Eighteen adults with a mean age of 54 years, as well as sixteen pre-frail and thirteen frail patients with mean ages of 78 and 85 years, respectively, performed the 30-s CST while threir trunk movements were measured by a sensor-unit at vertebra L3. Sit-stand-sit cycles were determined using both acceleration and orientation information to detect failed attempts. Movement-related phases (i.e. impulse, stand-up, and sit-down) were differentiated based on seat off and seat on events. Finally, the kinematic parameters of the impulse, stand-up and sit-down phases were obtained to identify potential differences across the three frailty groups. Results: For the stand-up and sit-down phases, velocity peaks and “modified impulse” parameters clearly differentiated subjects with different frailty levels (p < 0.001). The trunk orientation range during the impulse phase was also able to classify a subject according to his frail syndrome (p < 0.001). Furthermore, these parameters derived from the inertial units (IUs) are sensitive enough to detect frailty differences not registered by the number of completed cycles which is the standard test outcome. Conclusions: This study shows that IUs can enhance the information gained from tests currently used in clinical practice, such as the 30-s CST. Parameters such as velocity peaks, impulse, and orientation range are able to differentiate between adults and older populations with different frailty levels. This study indicates that early frailty detection could be possible in clinical environments, and the subsequent interventions to correct these disabilities could be prescribed before further degradation occurs.
  • PublicationOpen Access
    Sources of linear and non-linear synchrony between brain and muscles: linear and non-linear CMC sources
    (IEEE, 2020) Vidaurre Arbizu, Carmen; Gómez Fernández, Marisol; Nolte, Guido; Villringer, Arno; Carlowitz Ghori, Katherina von; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    This manuscript shows that it is possible to find distinct sources of brain activity, at similar frequencies, arising from linear and non-linear interactions of the brain with the muscular system. Those sources were obtained by maximizing coherence between multivariate signals recorded from brain and a single channel from the muscles. To find linear phase synchrony we used unrectified electromyographic recordings, whereas to de-mix nonlinear sources, we used rectified muscular measurements. In order to obtain the brain sources, we employed a recently published method called 'cacoh' that is able to maximize coherence over the complete frequency range of interest and simultaneously find patterns of sources for each them. Our results show that cortico-muscular interactions even at the same frequency range can have spatially distinct neuronal sources depending on whether interactions had linear or non-linear character.
  • PublicationOpen Access
    Impacto en el personal sanitario de urgencias extrahospitalarias de las cargas elevadas en la movilización de pacientes con silla de transporte
    (Asociación de Especialistas en Enfermería del Trabajo, 2018) Arenal Gota, Tania; Viana Gárriz, Juan Luis; Millor Muruzábal, Nora; Martínez Ramírez, Alicia; Gómez Fernández, Marisol; Belzunegui Otano, Tomás; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias de la Salud; Osasun Zientziak
    Introducción. El objetivo del estudio es valorar el esfuerzo físico realizado por el personal de la urgencia extrahospitalaria al trasladar pacientes de su domicilio a la ambulancia. Material y métodos. Estudio observacional transversal con un muestreo no probabilístico de conveniencia. Se comparan tres grupos: bomberos, mujeres y hombres técnicos en emergencias sanitarias (TES), utilizando sensores inerciales con los que obtenemos datos relativos del movimiento que ejecutan 10 profesionales sanitarios del ámbito extrahospitalario (4 bomberos y 6 TES) al bajar un paciente por las escaleras en condiciones similares a una urgencia. Resultados. Los sujetos que se encuentran en la posición de arriba en el desplazamiento de la carga presentan mayor aceleración en el plano suelo-techo y en la pierna izquierda. Las mujeres presentaron mayor aceleración en piernas y brazos que el resto, sin embargo, es en los brazos donde es significativamente superior. Cuando el sujeto que está en la posición de abajo en el desplazamiento de la carga, bajando la silla de espaldas, la aceleración de las piernas es superior que al bajarla en sentido de la marcha. Conclusiones. Los sujetos presentan mayor aceleración en piernas, siendo el lugar del cuerpo que sufre la suma del peso del paciente y del trabajador. Las mujeres presentan una mayor aceleración por lo que su esfuerzo físico es más acusado. Bajar la silla en sentido de la marcha, disminuye la aceleración en las piernas por lo que está posición es ergonómicamente mejor. Cuanto mayor es la estabilidad al bajar la silla y mayor seguridad del trabajador al desempeñar este trabajo, disminuye su aceleración y por lo tanto el esfuerzo físico que realiza.
  • PublicationOpen Access
    Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre
    (IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.
  • PublicationEmbargo
    Enhancing sensorimotor BCI performance with assistive afferent activity: an online evaluation
    (Elsevier, 2019) Vidaurre Arbizu, Carmen; Ramos Murguialday, Ander; Haufe, Stefan; Gómez Fernández, Marisol; Müller, Klaus Robert; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    An important goal in Brain-Computer Interfacing (BCI) is tofind and enhance procedural strategies for users for whom BCI control is not sufficiently accurate. To address this challenge, we conducted offline analyses and online experiments to test whether the classification of different types of motor imagery could be improved when the training of the classifier was performed on the data obtained with the assistive muscular stimulation below the motor threshold. 10 healthy participants underwent three different types of experimental conditions: a) Motor imagery (MI) of hands and feet b) sensory threshold neuromuscular electrical stimulation (STM) of hands and feet while resting and c) sensory threshold neuromuscular electrical stimulation during performance of motor imagery (BOTH). Also, another group of 10 participants underwent conditions a) and c). Then, online experiments with 15 users were performed. These subjects received neurofeedback during MI using classifiers calibrated either on MIor BOTH data recorded in the same experiment. Offline analyses showed that decoding MI alone using a classifier based on BOTH resulted in a better BCI accuracy compared to using a classifier based on MI alone. Online experiments confirmed accuracy improvement of MI alone being decoded with the classifier trained on BOTH data. In addition, we observed that the performance in MI condition could be predicted on the basis of a more pronounced connectivity within sensorimotor areas in the frequency bands providing the best performance in BOTH. Thesefinding might offer a new avenue for training SMR-based BCI systems particularly for users having difficulties to achieve efficient BCI control. It might also be an alternative strategy for users who cannot perform real movements but still have remaining afferent pathways (e.g., ALS and stroke patients).
  • PublicationEmbargo
    Canonical maximization of coherence: a novel tool for investigation of neuronal interactions between two datasets
    (Elsevier, 2019) Vidaurre Arbizu, Carmen; Nolte, Guido; Vries, I. E. J. de; Gómez Fernández, Marisol; Boonstra, Tjeerd W.; Müller, Klaus Robert; Villringer, Arno; Nikulin, Vadim V.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Synchronization between oscillatory signals is considered to be one of the main mechanisms through which neuronal populations interact with each other. It is conventionally studied with mass-bivariate measures utilizing either sensor-to-sensor or voxel-to-voxel signals. However, none of these approaches aims at maximizing syn-chronization, especially when two multichannel datasets are present. Examples include cortico-muscular coherence (CMC), cortico-subcortical interactions or hyperscanning (where electroencephalographic EEG/magnetoencephalographic MEG activity is recorded simultaneously from two or more subjects). For all of these cases, a method which could find two spatial projections maximizing the strength of synchronization would be desirable. Here we present such method for the maximization of coherence between two sets of EEG/MEG/EMG(electromyographic)/LFP (localfield potential) recordings. We refer to it as canonical Coherence (caCOH). caCOH maximizes the absolute value of the coherence between the two multivariate spaces in the frequency domain. Thisallows very fast optimization for many frequency bins. Apart from presenting details of the caCOH algorithm, we test its efficacy with simulations using realistic head modelling and focus on the application of caCOH to the detection of cortico-muscular coherence. For this, we used diverse multichannel EEG and EMG recordings and demonstrate the ability of caCOH to extract complex patterns of CMC distributed across spatial and frequency domains. Finally, we indicate other scenarios where caCOH can be used for the extraction of neuronal interactions.