Torres Molina, Nazareth
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Torres Molina
First Name
Nazareth
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo(Elsevier, 2023) Buesa, Ignacio; Torres Molina, Nazareth; Tortosa, Ignacio; Marín Ederra, Diana; Villa Llop, Ana; Douthe, Cyril; Santesteban García, Gonzaga; Medrano, H.; Escalona, José M.; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABAchieving more environmentally sustainable vineyards, particularly regarding efficient water use, is paramount in semi-arid grape-growing regions. Rootstocks may be a possible strategy to address these challenges, but require a comprehensive evaluation of their effect on the scion, including ecophysiological traits. The objectives of this study were 1) to characterize the physiological response of Tempranillo cultivar grafted onto five commercial (1103 P, 110 R, 140Ru, 420 A, and SO4), and seven recently bred (RG2, RG3, RG4, RG6, RG7, RG8 and RG9) rootstocks and 2) to elucidate the relationships between agronomic and physiological traits conferred by grapevine rootstocks. This was carried out over three seasons (2018–2020) in a typical Mediterranean vineyard by determining water relations, leaf gas exchange, carbon isotope ratios and vegetative development and yield components. The results highlighted the different behaviour of ‘Tempranillo’ vines due to the rootstock effects on vine water status, photosynthetic performance, hydraulic conductance, vegetative growth and yield parameters. Overall, rootstocks inducing vigour and yield in the scion, such as 140Ru and RG8, showed higher leaf gas exchange rates and hydraulic conductance at the whole-plant level due to less negative water potentials, suggesting a higher water uptake and transport capacity than RG2, RG7 and RG9. The RG rootstocks showed a very wide range of ecophysiological responses, but only RG8 outperformed compared to the most widely used commercial rootstocks. Moreover, this response was modulated by the season and the block soil type, suggesting the importance of rootstock selection according to the edaphoclimatic conditions. Therefore, this study highlights the high potential of rootstocks to adapt to water scarcity by improving crop water productivity in vineyards and provides physiological insights for future studies and breeding programmes.Publication Embargo Upgrading and validating a soil water balance model to predict stem water potential in vineyards(Elsevier, 2024-12-15) Mirás-Ávalos, José M.; Escalona, José M.; Pérez-Álvarez, Eva Pilar; Romero Azorín, Pascual; Botia, Pablo; Navarro, Josefa; Torres Molina, Nazareth; Santesteban García, Gonzaga; Uriarte, David; Intrigliolo, Diego S.; Buesa, Ignacio; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABEfficient water management is pivotal for viticulture sustainability. Decision support tools can advise on how to optimize irrigation or on the feasibility of growing grapes in rainfed conditions, but reliable algorithms for assessing vine water status are required. In this context, the aim of the current study was to upgrade a soil water balance model specific for vineyards by incorporating meteorological, soil and vine vigor in equations that transform the fraction of transpirable soil water into midday stem water potential (Ψstem). The model's sensitivity to variations in the magnitude of input parameters was analyzed. Furthermore, the model was tested in a broad scope of Spanish vineyards with different grapevine cultivars (both red and white), rootstocks, plant age, soil and climatic conditions, and water regimes, totaling 129 scenarios. The model was only slightly sensitive to variations in the magnitude of most inputs, except for the fraction of transpirable water at which leaf stomatal conductance begin to decline. Moreover, the model satisfactorily reproduced the evolution of Ψstem over the growing season, although it slightly overestimated the measured ¿stem values, as the slopes of the fitted regression lines were lesser than 1 on most occasions, 76 out of 129. Nonetheless, the coefficients of determination for these relationships were greater than 0.9, except for 21 datasets. Mean errors averaged 0.024 ± 0.015 MPa, while root mean square errors averaged 0.27 ± 0.01 MPa. The index of agreement was greater than 0.75 in 51 datasets, with only three datasets showing an index of agreement lower than 0.5. Nevertheless, the deviations between observed and simulated Ψstem values did not alter the classification of the water stress undergone by grapevines. This upgraded model could constitute the core of a decision support system for water management in vineyards, applicable to both rainfed and irrigated conditions.Publication Open Access The role of rootstocks for grape growing adaptation to climate change: meta-analysis of the research conducted in Spanish viticulture(International Viticulture and Enology Society, 2023) Santesteban García, Gonzaga; Rekarte, Isabel; Torres Molina, Nazareth; Galar Martínez, Mónica; Villa Llop, Ana; Visconti, Fernando; Intrigliolo, Diego S.; Escalona, José M.; Herralde, Felicidad de; Miranda Jiménez, Carlos; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMABRootstock election is one of the key decisions when designing a vineyard. Although the research performed to determine the effect they induce in the behaviour of scion varieties is not scarce, it is not easy to have a global idea, as results are usually published scattered. In this work, we re-examine previous research conducted in Spain on rootstock implications on vine agronomic performance through the performance of a meta-analysis (MA). As a result, we were able to integrate the information reported in 20 articles that included rootstock experimentation conducted with 36 different varieties and 47 different rootstocks, totalling 764 individual records. However, when the information was filtered before the meta-analysis, this number decreased to 312 records, for which rootstock Response Ratios (RR) were calculated. The characteristics conferred by the rootstock were more closely related to the rootstock itself, rather than to the characteristics of the Vitis sp. crossing used to create the rootstock. Several rootstocks were identified as more suitable for adapting to future climate change conditions, as far as they were able to moderate sugar accumulation and pH (161-49 C, 41-B MGt and 420A MGt). Meanwhile, 140 Ru and 5-BB were observed to provide high pH and sugar contents despite their high yield. In conclusion, despite being based on data from a single country, the meta-analysis was shown to be a useful tool for enhancing the value of previous research on rootstocks. Combining articles from both peer-reviewed and technical journals helped in the assessment of the implications of different rootstocks, although further steps should be taken to facilitate data integration (harmonisation of measurement and reporting procedures, open data repositories, etc).