Torres Molina, Nazareth
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Torres Molina
First Name
Nazareth
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Obtaining spatial variations in Cabernet Sauvignon (Vitis vinifera L.) wine flavonoid composition and aromatic profiles by studying long-term plant water status in hyper-arid seasons(MDPI, 2024) Yu, Runze; Torres Molina, Nazareth; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraThe spatial variability in vineyard soil might negatively affect wine composition, leading to inhomogeneous flavonoid composition and aromatic profiles. In this study, we investigated the spatial variability in wine chemical composition in a Cabernet Sauvignon (Vitis vinifera L.) vineyard in 2019 and 2020. Because of the tight relationships with soil profiles, mid-day stem water potential integrals (Ψstem Int) were used to delineate the vineyard into two zones, including Zone 1 with relatively higher water stress and Zone 2 with relatively lower water stress. Wine from Zone 2 generally had more anthocyanins in 2019. In 2020, Zone 1 had more anthocyanins and flavonols. Zone 2 had more proanthocyanidin extension and terminal subunits as well as total proanthocyanidins in 2020. According to the Principal Component Analyses (PCA) for berry and wine chemical composition, the two zones were significantly different in the studied wine aromatic compounds. In conclusion, this study provides evidence of the possibility of managing the spatial variability of both wine flavonoid composition and aromatic profiles through connecting vineyard soil variability to grapevine season-long water status.Publication Open Access Photoselective shade films mitigate heat wave damage by reducing anthocyanin and flavonol degradation in grapevine (vitis vinifera L.) berries(Frontiers Media, 2022) Marigliano, Lauren E.; Yu, Runze; Torres Molina, Nazareth; Tanner, Justin D.; Battany, Mark; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraWine grape production is challenged by forecasted increases in air temperature and droughts due to climate change and photoselective overhead shade films are promising tools in hot viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berries to solar radiation overexposure, optimize shade film use for preserving berry composition. An experiment was conducted for two years with four shade films (D1, D3, D4, D5) with differing solar radiation spectra transmittance and compared to an uncovered control (C0). Integrals for leaf gas exchange and mid-day stem water potential were unaffected by the shade films in both years. At harvest, berry primary metabolites were not affected by treatments applied in either year. Despite precipitation exclusion during the dormant seasons in shaded treatments, and cluster zone temperatures reaching 58°C in C0, yield was not affected. Berry skin anthocyanin and flavonol composition and content were measured by C18 reversed-phase HPLC. In 2020, total skin anthocyanins (mg·berry-1) in the shaded treatments were 27% greater than C0 during berry ripening and at harvest. Conversely, flavonol content in 2020 decreased in partially shaded grapevines compared to C0. Berry flavonoid content in 2021 increased until harvest while flavonol degradation was apparent from veraison to harvest in 2020 across partially shaded and control grapevines. Untreated control showed lower di- to tri-hydroxylated flavonol ratios closer to harvest. Our results provided evidence that overhead partial shading of vineyards mitigate anthocyanin degradation by reducing cluster zone temperatures and is a useful tool in combatting climate change in hot climate regions.