Torres Molina, Nazareth

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Torres Molina

First Name

Nazareth

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Shifts in phenolic composition and aromatic profiles of Cabernet Sauvignon (vitis vinifera L.) wines are driven by different irrigation amounts in a hot climate
    (Elsevier, 2021) Torres Molina, Nazareth; Yu, Runze; Martínez-Lüscher, Johann; Girardello, Raul C.; Kostaki, Evmorfia; Oberholster, Anita; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Wine final color, taste and aroma are closely related to the accumulation of secondary metabolites that may be affected by deficit irrigation applied in viticulture. A two-year study was conducted to assess the different fractions of crop evapotranspiration (ETc) irrigation replacement on wine composition, addressing the analysis of flavonoids and volatiles under context of global warming. Irrigating with 100% ETc (full grapevine demand) enhanced wine hue, antioxidant capacity, and some aromas; however, it came with a diminution of flavonoids and a less stable flavonoid profile. Replacing 25 and 50% ETc in wine grape improved wine color intensity, concentration of flavonoids, and shifted the aromatic profiles. These treatments increased some terpenes and esters which may enhance the desirable aromas for Cabernet Sauvignon, and decreased C6 alcohols related to unpleasant ones. Therefore, despite the warming trends in Mediterranean climates, 100% ETc irrigation would be not advisable to improve or maintain wine quality, and 50% ETc was sufficient.
  • PublicationOpen Access
    Mycorrhizal symbiosis affects ABA metabolism during berry ripening in vitis vinifera L. cv. tempranillo grown under climate change scenarios
    (Elsevier, 2018-06-19) Torres Molina, Nazareth; Goicoechea, Nieves; Zamarreño, Ángel M.; Antolín, M. Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Arbuscular mycorrhizal symbiosis is a promising tool for improving the quality of grapes under changing environments. Therefore, the aim of this research was to determine if the ability of arbuscular mycorrhizal fungi (AMF) to enhance phenolic content (specifically, anthocyanins) in a climate change framework could be mediated by alterations in berry ABA metabolism during ripening. The study was carried out on fruit-bearing cuttings of cv. Tempranillo (CL-1048 and CL-1089) inoculated (+M) or not (-M) with AMF. Two experimental designs were implemented. In the first experiment +M and -M plants were subjected to two temperatures (24/14°C or 28/18°C (day/night)) from fruit set to berry maturity. In the second experiment, +M and -M plants were subjected to two temperatures (24/14°C or 28/18°C (day/night)) combined with two irrigation regimes (late water deficit (LD) and full irrigation (FI)). At 28/18°C AMF contributed to an increase in berry anthocyanins and modulated ABA metabolism, leading to higher ABA-GE and 7'OH-ABA and lower phaseic acid (PA) in berries compared to -M plants. Under the most stressful scenario (LD and 28/18°C), at harvest +M plants exhibited higher berry anthocyanins and 7´OH-ABA and lower PA and dihydrophaseic acid (DPA) levels than -M plants. These findings highlight the involvement of ABA metabolism into the ability of AMF to improve some traits involved in the quality of grapes under global warming scenarios.
  • PublicationOpen Access
    Flavonoid and amino acid profiling on vitis vinifera L. cv tempranillo subjected to deficit irrigation under elevated temperaturas
    (Elsevier, 2017-05-03) Torres Molina, Nazareth; Hilbert, Ghislaine; Luquin, Josu; Goicoechea, Nieves; Antolín, M. Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Throughout the southern Mediterranean regions of Europe, projected climate warming combined with severe droughts during the growing season may alter grape metabolism, thus modifying the nutritional value of berries and the quality of wines. This study investigated the effects of pre- and post-veraison drought under elevated temperatures on berry skin metabolism of two Tempranillo clones (CL). Experimental assays were performed on fruit-bearing cuttings from CL-1089 and CL-843 of Vitis vinifera (L.) cv. Tempranillo subjected to two temperature regimes (24/14 °C or 28/18 °C (day/night)) combined with three irrigation regimes during berry ripening: (i) water deficit from fruit set to veraison (early deficit, ED); (ii) water deficit from veraison to maturity (late deficit, LD); and (iii) full irrigation (FI). At 24/14 °C, the LD treatment performed better than the ED treatment. Differences were attenuated at 28/18 °C and responses were modulated by type of clone. Elevated temperatures induced the accumulation of hexoses and amino acids in berries. ED at 24/14 °C reduced anthocyanins and flavonols, which may decrease the antioxidant properties of fruits. In contrast, the levels of these secondary metabolites did not decrease when LD was applied. Our results suggest that the adaptation of grapevines for climate change might be plausible with the optimization of timing of water deficit and the appropriate selection of clones.
  • PublicationOpen Access
    Adapting wine grape production to climate change through canopy architecture manipulation and irrigation in warm climates
    (Frontiers Media, 2022) Yu, Runze; Torres Molina, Nazareth; Tanner, Justin D.; Kacur, Sean M.; Marigliano, Lauren E.; Zumkeller, María; Gilmer, Joseph Chris; Gambetta, Gregory A.; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura
    Grape growing regions are facing constant warming of the growing season temperature as well as limitations on ground water pumping used for irrigating to overcome water deficits. Trellis systems are utilized to optimize grapevine production, physiology, and berry chemistry. This study aimed to compare 6 trellis systems with 3 levels of applied water amounts based on different replacements of crop evapotranspiration (ETc) in two consecutive seasons. The treatments included a vertical shoot position (VSP), two modified VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a Guyot pruned VSP (GY) combined with 25%, 50%, and 100% ETc water replacement. The SH had greater yields, whereas HQ was slower to reach full production potential. At harvest in both years, the accumulation of anthocyanin derivatives was enhanced in SH, whereas VSPs decreased them. As crown porosity increased (mostly VSPs), berry flavonol concentration and likewise molar % of quercetin in berries increased. Conversely, as leaf area increased, total flavonol concentration and molar % of quercetin decreased, indicating a preferential arrangement of leaf area along the canopy for overexposure of grape berry with VSP types. The irrigation treatments revealed linear trends for components of yield, where greater applied water resulted in larger berry size and likewise greater yield. 25% ETc was able to increase berry anthocyanin and flavonol concentrations. Overall, this study evidenced the efficiency of trellis systems for optimizing production and berry composition in Californian climate, also, the feasibility of using flavonols as the indicator of canopy architecture.