Torres Molina, Nazareth
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Torres Molina
First Name
Nazareth
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Shifts in phenolic composition and aromatic profiles of Cabernet Sauvignon (vitis vinifera L.) wines are driven by different irrigation amounts in a hot climate(Elsevier, 2021) Torres Molina, Nazareth; Yu, Runze; Martínez-Lüscher, Johann; Girardello, Raul C.; Kostaki, Evmorfia; Oberholster, Anita; Kurtural, Sahap Kaan; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraWine final color, taste and aroma are closely related to the accumulation of secondary metabolites that may be affected by deficit irrigation applied in viticulture. A two-year study was conducted to assess the different fractions of crop evapotranspiration (ETc) irrigation replacement on wine composition, addressing the analysis of flavonoids and volatiles under context of global warming. Irrigating with 100% ETc (full grapevine demand) enhanced wine hue, antioxidant capacity, and some aromas; however, it came with a diminution of flavonoids and a less stable flavonoid profile. Replacing 25 and 50% ETc in wine grape improved wine color intensity, concentration of flavonoids, and shifted the aromatic profiles. These treatments increased some terpenes and esters which may enhance the desirable aromas for Cabernet Sauvignon, and decreased C6 alcohols related to unpleasant ones. Therefore, despite the warming trends in Mediterranean climates, 100% ETc irrigation would be not advisable to improve or maintain wine quality, and 50% ETc was sufficient.Publication Open Access Mycorrhizal symbiosis affects ABA metabolism during berry ripening in vitis vinifera L. cv. tempranillo grown under climate change scenarios(Elsevier, 2018-06-19) Torres Molina, Nazareth; Goicoechea, Nieves; Zamarreño, Ángel M.; Antolín, M. Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraArbuscular mycorrhizal symbiosis is a promising tool for improving the quality of grapes under changing environments. Therefore, the aim of this research was to determine if the ability of arbuscular mycorrhizal fungi (AMF) to enhance phenolic content (specifically, anthocyanins) in a climate change framework could be mediated by alterations in berry ABA metabolism during ripening. The study was carried out on fruit-bearing cuttings of cv. Tempranillo (CL-1048 and CL-1089) inoculated (+M) or not (-M) with AMF. Two experimental designs were implemented. In the first experiment +M and -M plants were subjected to two temperatures (24/14°C or 28/18°C (day/night)) from fruit set to berry maturity. In the second experiment, +M and -M plants were subjected to two temperatures (24/14°C or 28/18°C (day/night)) combined with two irrigation regimes (late water deficit (LD) and full irrigation (FI)). At 28/18°C AMF contributed to an increase in berry anthocyanins and modulated ABA metabolism, leading to higher ABA-GE and 7'OH-ABA and lower phaseic acid (PA) in berries compared to -M plants. Under the most stressful scenario (LD and 28/18°C), at harvest +M plants exhibited higher berry anthocyanins and 7´OH-ABA and lower PA and dihydrophaseic acid (DPA) levels than -M plants. These findings highlight the involvement of ABA metabolism into the ability of AMF to improve some traits involved in the quality of grapes under global warming scenarios.Publication Open Access Berry quality and antioxidant properties in vitis vinifera cv. tempranillo as affected by clonal variability, mycorrhizal inoculation and temperatura(CSIRO Publishing, 2016-08-24) Torres Molina, Nazareth; Goicoechea, Nieves; Morales Iribas, Fermín; Antolín, M. Carmen; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta ElikaduraThe projected increase in mean temperatures caused by climate change is expected to have detrimental impacts on berry quality. Microorganisms as arbuscular mycorrhizal fungi (AMF) produce numerous benefits to host plants and can help plants to cope with abiotic stresses such as high temperature. The aims of this research were to characterise the response of three clones of Vitis vinifera L. cv. Tempranillo to elevated temperatures and to determine whether AMF inoculation can improve berry antioxidant properties under these conditions. The study was carried out on three fruit-bearing cuttings clones of cv. Tempranillo (CL-260, CL-1048 and CL-1089) inoculated with AMF or uninoculated and subjected to two temperature regimes (day¿night: 24°C¿14°C and 28°C¿18°C) during berry ripening. Results showed that clonal diversity of Tempranillo resulted in different abilities to respond to elevated temperature and AMF inoculation. In CL-1048, AMF inoculation improved parameters related to phenolic maturity such as anthocyanin content and increased antioxidant activity under elevated temperature, demonstrating a protective role of AMF inoculation against warming effects on berry quality. The results therefore suggest that selection of new clones and/or the implementation of measures to promote the association of grapevines with AMF could be strategies to improve berry antioxidant properties under future warming conditions.