Teniente Vallinas, Jorge
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Teniente Vallinas
First Name
Jorge
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
57 results
Search Results
Now showing 1 - 10 of 57
Publication Open Access Antena corrugada con perfil gaussiano de gran ancho de banda(2001) Teniente Vallinas, Jorge; Gonzalo García, Ramón; Río Bocio, Carlos del; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaEn este trabajo se presenta el diseño de una antena de bocina corrugada con más de un 40% de ancho de banda. Los patrones de radiación medidos coinciden muy bien con los simulados. Esta antena se puede usar en aplicaciones que requieran un gran ancho de banda con bajos lóbulos laterales (< -28 dB), baja polarización cruzada (< -30 dB) y con requerimientos en potencia reflejada no demasiado restrictivos (< -15 dB).Publication Open Access A novel ku-band circularly-polarized horn antenna based on a ridged wall(IEEE, 2023) Marzo Oyarbide, Andoni; Teberio Berdún, Fernando; Teniente Vallinas, Jorge; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper, a novel wideband (31.5 % bandwidth) circularly-polarized antenna based on a ridged wall is presented. A pair of ridges on the inner wall of the horn serves as an inbuilt polarizer, which can generate left-hand or right-hand circular polarization without any additional polarizer. The ridged wall is placed at 45° with respect to the input port linearly polarized wave to generate a 90° phase delay and obtain the desired circular polarization at the aperture. The simulated results show that the antenna works great in the whole Ku satellite band (from 10.7 to 14.7 GHz) with more than 20 dB return loss and below 1 dB axial ratio. The antenna can be fabricated using traditional computer numerical control machining techniques or the new 3D metal additive manufacturing processes.Publication Open Access Evanescently fed electromagnetic band-gap horn antennas and arrays(IEEE, 2012) Khromova, Irina; Ederra Urzainqui, Íñigo; Teniente Vallinas, Jorge; Gonzalo García, Ramón; Esselle, Karu P.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe design of a horn antenna based on electromagnetic band-gap structures (EBGs) and fed by evanescent fields in the containing periodic structure is presented. Such all-dielectric antennas can form compact arrays and provide a promising solution for millimeter, submillimeter, and terahertz (THz) devices. An evanescently fed EBG horn antenna design based on a woodpile structure and operating at frequencies around 110 GHz is presented, together with experimental and simulation results for an analogous scaled-up prototype antenna operating in the Ku-band. It exhibits a 9%bandwidth and an average level of maximum gain approximately equal to 14.6 dBi.Publication Open Access Introducción de la bocina en el lazo de optimización de sistemas de reflectores(2005) Delgado, D.; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn the design process of a complete antenna system based on reflectors, the feed real performance is usually included once the reflectors have been optimized with an ideal feed. In this paper, the proposal is to include the feed inside the optimization loop of the whole system, by means of a parametric definition of the feeder. To perform the optimization, the parametric feed will be considered as an additional surface, which receives some desired electric field that should be analyzed to properly modify the feed definition parameters in order to reduce the difference between the desired and the new generated field distribution over a planar surface nearby the focal point of the system. At the end of the optimization process, all the elements of the whole antenna system, reflectors and feed, will be totally defined and perfectly coupled.Publication Open Access 60 GHz single-layer slot-array antenna fed by groove gap waveguide(IEEE, 2019) Ferrando Rocher, Miguel; Valero Nogueira, Alejandro; Herranz Herruzo, José I.; Teniente Vallinas, Jorge; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA V-band single-layer low-loss slot-array antenna is presented in this letter. Radiating slots are backed by coaxial cavities, which are fed through a groove gap waveguide E-plane corporate feed network. Cavity resonances are created by shortening nails with respect to the surrounding ones. This fact enables a compact single-layer architecture since coaxial cavities and feeding network can share the same bed of nails. A 16 x 16 array is designed, constructed, and measured to demonstrate the viability of this concept for high-gain single-layer slot-array antennas. In addition, this solution can be extended to circular polarization by seamlessly adding a polarizer above the slots without changing the feeding network piece. Measurements show a relative bandwidth of 10% with input reflection coefficient better than -10 dB and a mean antenna efficiency above 70% within the operating frequency band (57-66 GHz).Publication Open Access New coplanar waveguide based on the gap waveguide technology(IEEE, 2021) Biurrun Quel, Carlos; Teniente Vallinas, Jorge; Río Bocio, Carlos del; Institute of Smart Cities - ISCA new planar waveguide, coined Inverted coplanar gap waveguide is presented. The concept of gap waveguides and parallel plate suppression between perfect magnetic and a perfect electric conductors is applied to coplanar waveguides in order to create a low-dispersion, low-loss transmission line. The combination of an artificial magnetic conductor and channelized top cover allow the propagation of an even coplanar mode with a strong component propagating over the air while solving encapsulation matters without the use of metallic vias. The main theory behind this new concept is presented and supported by FEM simulations on a commercial software package.Publication Open Access Soret fishnet metalens antenna(Springer Nature, 2015) Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Pacheco-Peña, Víctor; Crespo López, Gonzalo; Teniente Vallinas, Jorge; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaAt the expense of frequency narrowing, binary amplitude-only diffractive optical elements emulate refractive lenses without the need of large profiles. Unfortunately, they also present larger Fresnel reflection loss than conventional lenses. This is usually tackled by implementing unattractive cumbersome designs. Here we demonstrate that simplicity is not at odds with performance and we show how the fishnet metamaterial can improve the radiation pattern of a Soret lens. The building block of this advanced Soret lens is the fishnet metamaterial operating in the near-zero refractive index regime with one of the edge layers designed with alternating opaque and transparent concentric rings made of subwavelength holes. The hybrid Soret fishnet metalens retains all themeritsof classicalSoret lenses suchas lowprofile, lowcost andeaseofmanufacturing. It is designed for the W-band of themillimeter-waves range with a subwavelength focal lengthFL51.58 mm(0.5l0) aiming at a compact antenna or radar systems. The focal properties of the lens along with its radiation characteristics in a lens antenna configuration have been studied numerically and confirmed experimentally, showing a gain improvement of ,2 dB with respect to a fishnet Soret lens without the fishnet metamaterial.Publication Open Access Fully metallic Luneburg metalens antenna in gap waveguide technology at V-band(IEEE, 2023) Pérez Quintana, Dayan; Bilitos, Christos; Ruiz-García, Jorge; Ederra Urzainqui, Íñigo; Teniente Vallinas, Jorge; González-Ovejero, David; Beruete Díaz, Miguel; Institute of Smart Cities - ISCThis article presents the design of a flat Luneburg metalens antenna at V-band using gap waveguide (GW) technology. The metalens consists of a parallel plate waveguide (PPW) loaded with metallic pins whose height is modulated to get an effective refractive index that follows the Luneburg equation. A Groove GW (GGW) H-plane horn is used to illuminate the metalens, such that the rays are collimated and a planar wavefront is generated in the direction of propagation. Since the structure at hand is planar, it can be efficiently integrated on flat surfaces. Moreover, the fully metallic structure is mechanically robust and presents lower losses than lenses including dielectric substrates. A prototype has been fabricated and tested, simulations and experimental results are in very good agreement. The metalens yields an input reflection coefficient (S11) below −10 dB from 45 to 70 GHz, whereas the −3 dB gain fractional bandwidth is 26.2% with respect to a center frequency of 60 GHz, with a peak of 22.5 dB at 61 GHz. These features make this design an interesting solution for millimeter-wave (MMW) applications.Publication Open Access ASTRA 3B horn antenna design(2010) Teniente Vallinas, Jorge; Río Bocio, Carlos del; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe ASTRA 3B satellite includes 60 Ku-band state-of-the- art transponders and 4 Ka-band transponders. The spacecraft have been designed for the distribution of both direct-to-home (DTH) broadcast services and two way broadband services across Europe. After Astra 2B and Astra 1M, Astra 3B is the third Astra satellite to be built by ASTRIUM. Two different horn antennas, for Ku- and Ka-bands, were designed with very stringent requirements as it is usually required for space applications. For the horns the cross-polar levels should be below -45 dB, and the return loss below -30dB for all frequency bands. Normally the horn aperture is fixed by the required illumination of the reflector edges, so it is difficult to reduce the aperture size of a horn antenna. Nevertheless, thanks to the design technique used, the relation between the output aperture and the total horn length for the Ka-band was approximately 0.56 and for the Kuband was something like 0.76. This means that the lengths of the horn antennas are 1.8 and 1.32 times the respective apertures. Furthermore, the taper and the phase center movement inside the respective bandwidths could be controlled and limited to certain limits during the optimization procedure, obtaining a very efficient configuration when they were combined with the reflectors. The horn antennas were based on the combination of horizontal and vertical corrugations and they were designed by the Antenna group of the Public University of Navarra.Publication Open Access All-metallic ε-near-zero (ENZ) lens based on ultra-narrow hollow rectangular waveguides: experimental results(IEEE, 2014) Orazbayev, Bakhtiyar; Torres Landívar, Víctor; Pacheco-Peña, Víctor; Falcone Lanas, Francisco; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Navarro Cía, Miguel; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaHere we perform numerical and experimental investigation of plano-concave all-metallic ε-near-zero (ENZ) lens with operational frequency f = 144 GHz. The ENZ lens is achieved by stacking an array of narrow hollow rectangular waveguides working near cut-off frequency. Focusing and radiation properties are numerically analyzed and measured. The enhancement of 5.61 dB and directivity of 17.6 dBi are shown. Good agreement between experimental and numerical results is demonstrated.