Jurío Munárriz, Aránzazu
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Jurío Munárriz
First Name
Aránzazu
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Initiative to increment the number of women in STEM degrees: women, science and technology chair of the Public University of Navarre(IEEE, 2020) Aranguren Garacochea, Patricia; San Martín Biurrun, Idoia; Catalán Ros, Leyre; Martínez Ramírez, Alicia; Jurío Munárriz, Aránzazu; Díaz Lucas, Silvia; Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Barrenechea Tartas, Edurne; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Public University of Navarre joined with Navarre Government has created the Women, Science and Technology Chair. This chair arises due to the plummeting tendency of the percentage of women in STEM degrees with the aim of reversing this trend. The programme of activities is defined throughout this contribution by six activities: a Theatre Play, a Poster Award on Final Degree/Masters Project, The 1st Week of Women, Science and Technology, the Promotion of Technical Degrees in schools and high-schools, a Workshop about Gender Stereotypes and the Fostering of Women among Science and Environment. Each activity gained great success and the preset goals were highly accomplished, especially, the 1st Week of Women, Science and Technology activity. The latter achieved a great success both in participation and in repercussion, contributing to visualize the role of women in science and technology.Publication Open Access Diseño y captura de una base de datos para el reconocimiento de emociones minimizando sesgos(CAEPIA, 2024) Jurío Munárriz, Aránzazu; Pascual Casas, Rubén; Domínguez Catena, Iris; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertistate Publikoa; Gobierno de Navarra / Nafarroako GobernuaEl reconocimiento de emociones a partir de expresiones faciales (FER) es un campo de investigación importante para la interacción persona-máquina. Sin embargo, los conjuntos de datos utilizados para entrenar modelos FER a menudo contienen sesgos demográficos que pueden conducir a la discriminación en el modelo final. En este trabajo, presentamos el diseño y la captura realizados para la creación de una nueva base de datos para FER, donde tratamos de minimizar los sesgos desde el propio diseño. La base de datos se ha creado utilizando diferentes métodos de captura. Para comprobar la reducción de los sesgos alcanzada, analizamos diferentes métricas de sesgo representacional y estereotípico sobre la base de datos generada y la comparamos frente a otras bases de datos estándar en la literatura de FER.Publication Open Access Less can be more: representational vs. stereotypical gender bias in facial expression recognition(Springer, 2024-10-14) Domínguez Catena, Iris; Paternain Dallo, Daniel; Jurío Munárriz, Aránzazu; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Publica de Navarra / Nafarroako Unibertsitate PublikoaMachine learning models can inherit biases from their training data, leading to discriminatory or inaccurate predictions. This is particularly concerning with the increasing use of large, unsupervised datasets for training foundational models. Traditionally, demographic biases within these datasets have not been well-understood, limiting our ability to understand how they propagate to the models themselves. To address this issue, this paper investigates the propagation of demographic biases from datasets into machine learning models. We focus on the gender demographic component, analyzing two types of bias: representational and stereotypical. For our analysis, we consider the domain of facial expression recognition (FER), a field known to exhibit biases in most popular datasets. We use Affectnet, one of the largest FER datasets, as our baseline for carefully designing and generating subsets that incorporate varying strengths of both representational and stereotypical bias. Subsequently, we train several models on these biased subsets, evaluating their performance on a common test set to assess the propagation of bias into the models¿ predictions. Our results show that representational bias has a weaker impact than expected. Models exhibit a good generalization ability even in the absence of one gender in the training dataset. Conversely, stereotypical bias has a significantly stronger impact, primarily concentrated on the biased class, although it can also influence predictions for unbiased classes. These results highlight the need for a bias analysis that differentiates between types of bias, which is crucial for the development of effective bias mitigation strategies.Publication Open Access Women, Science and Technology Chair—Promoting women’s careers in stem fields(IEEE, 2023) Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Ortiz Nicolás, Amalia; San Martín Biurrun, Idoia; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe Chair of Women, Science and Technology of the Universidad Pública de Navarra (UPNA) aims to increase the participation of women in the fields of science and technology. Scientific culture and dissemination are the main focus of the different actions of the Chair. These activities include: the theatrical performance "Yo quiero ser científica", experimental workshops and conferences and exhibitions for all audiences and ages. More than 6.000 people have seen the play, more than 1.500 secondary school students have participated in the workshops and the audiovisual material has received more than 20.000 visits.Publication Open Access A comparative study of CO2 forecasting strategies in school classrooms: a step toward improving indoor air quality(MDPI, 2025-03-09) Garcia-Pinilla, Peio; Jurío Munárriz, Aránzazu; Paternain Dallo, Daniel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper comprehensively investigates the performance of various strategies for predicting CO2 levels in school classrooms over different time horizons by using data collected through IoT devices. We gathered Indoor Air Quality (IAQ) data from fifteen schools in Navarra, Spain between 10 January and 3 April 2022, with measurements taken at 10-min intervals. Three prediction strategies divided into seven models were trained on the data and compared using statistical tests. The study confirms that simple methodologies are effective for short-term predictions, while Machine Learning (ML)-based models perform better over longer prediction horizons. Furthermore, this study demonstrates the feasibility of using low-cost devices combined with ML models for forecasting, which can help to improve IAQ in sensitive environments such as schools.Publication Open Access Cátedra Mujer, Ciencia y Tecnología de la UPNA(Gobierno de Navarra, 2023) Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Gómez Fernández, Marisol; San Martín Biurrun, Idoia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2La Cátedra Mujer, Ciencia y Tecnología de la Universidad Pública de Navarra (UPNA) tiene como objetivo aumentar la participación de las mujeres en campos de ciencia y tecnología. La cultura y la divulgación científicas son el eje principal de la actividad de la Cátedra. Dicha actividad engloba: la representación teatral Yo quiero ser científica, talleres experimentales y conferencias y exposiciones para todos los públicos y edades. Más de 6000 personas han visto la obra de teatro, más de 1500 estudiantes de ESO han participado en los talleres y el material audiovisual ha recibido más de 20000 visitas.