Jurío Munárriz, Aránzazu
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Jurío Munárriz
First Name
Aránzazu
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
8 results
Search Results
Now showing 1 - 8 of 8
Publication Open Access Evolution in time of L-fuzzy context sequences(Elsevier, 2016) Alcalde, Cristina; Burusco Juandeaburre, Ana; Bustince Sola, Humberto; Jurío Munárriz, Aránzazu; Sanz Delgado, José Antonio; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, we consider a complete lattice L and we study L-fuzzy context sequences which represent the evolution in time of an L-fuzzy context. To carry out this study, in the first part of the paper, we consider n-ary OWA operators in complete lattices, which enable us to make a general analysis and a temporal analysis at any moment in time of L-fuzzy context sequences. After that, evolution in time of the relationship between the objects and the attributes is considered. In particular, we analyze the concepts of Trend and Persistent formal contexts. Finally, we illustrate our results with an example where we consider the particular lattice L = J ([0, 1]).Publication Open Access Type-2 fuzzy entropy-sets(IEEE, 2017) Miguel Turullols, Laura de; Santos, Helida; Sesma Sara, Mikel; Bedregal, Benjamin; Jurío Munárriz, Aránzazu; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe final goal of this study is to adapt the concept of fuzzy entropy of De Luca and Termini to deal with Type-2 Fuzzy Sets. We denote this concept Type-2 Fuzzy Entropy-Set. However, the construction of the notion of entropy measure on an infinite set, such us [0, 1], is not effortless. For this reason, we first introduce the concept of quasi-entropy of a Fuzzy Set on the universe [0, 1]. Furthermore, whenever the membership function of the considered Fuzzy Set in the universe [0, 1] is continuous, we prove that the quasi-entropy of that set is a fuzzy entropy in the sense of De Luca y Termini. Finally, we present an illustrative example where we use Type-2 Fuzzy Entropy-Sets instead of fuzzy entropies in a classical fuzzy algorithm.Publication Open Access Less can be more: representational vs. stereotypical gender bias in facial expression recognition(Springer, 2024-10-14) Domínguez Catena, Iris; Paternain Dallo, Daniel; Jurío Munárriz, Aránzazu; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Publica de Navarra / Nafarroako Unibertsitate PublikoaMachine learning models can inherit biases from their training data, leading to discriminatory or inaccurate predictions. This is particularly concerning with the increasing use of large, unsupervised datasets for training foundational models. Traditionally, demographic biases within these datasets have not been well-understood, limiting our ability to understand how they propagate to the models themselves. To address this issue, this paper investigates the propagation of demographic biases from datasets into machine learning models. We focus on the gender demographic component, analyzing two types of bias: representational and stereotypical. For our analysis, we consider the domain of facial expression recognition (FER), a field known to exhibit biases in most popular datasets. We use Affectnet, one of the largest FER datasets, as our baseline for carefully designing and generating subsets that incorporate varying strengths of both representational and stereotypical bias. Subsequently, we train several models on these biased subsets, evaluating their performance on a common test set to assess the propagation of bias into the models¿ predictions. Our results show that representational bias has a weaker impact than expected. Models exhibit a good generalization ability even in the absence of one gender in the training dataset. Conversely, stereotypical bias has a significantly stronger impact, primarily concentrated on the biased class, although it can also influence predictions for unbiased classes. These results highlight the need for a bias analysis that differentiates between types of bias, which is crucial for the development of effective bias mitigation strategies.Publication Open Access Extensions of fuzzy sets in image processing: an overview(EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, Pedro; Melo-Pinto, Pedro; Automática y Computación; Automatika eta KonputazioaThis work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.Publication Open Access Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system(Elsevier, 2013) Sanz Delgado, José Antonio; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; Brugos Larumbe, Antonio; Pagola Barrio, Miguel; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaObjective: To develop a classifier that tackles the problem of determining the risk of a patient of suffering from a cardiovascular disease within the next ten years. The system has to provide both a diagnosis and an interpretable model explaining the decision. In this way, doctors are able to analyse the usefulness of the information given by the system. Methods: Linguistic fuzzy rule-based classification systems are used, since they provide a good classification rate and a highly interpretable model. More specifically, a new methodology to combine fuzzy rule-based classification systems with interval-valued fuzzy sets is proposed, which is composed of three steps: 1) the modelling of the linguistic labels of the classifier using interval-valued fuzzy sets; 2) the use of the Kα operator in the inference process and 3) the application of a genetic tuning to find the best ignorance degree that each interval-valued fuzzy set represents as well as the best value for the parameter α of the Kα operator in each rule. Results: The suitability of the new proposal to deal with this medical diagnosis classification problem is shown by comparing its performance with respect to the one provided by two classical fuzzy classifiers and a previous interval-valued fuzzy rule-based classification system. The performance of the new method is statistically better than the ones obtained with the methods considered in the comparison. The new proposal enhances both the total number of correctly diagnosed patients, around 3% with respect the classical fuzzy classifiers and around 1% versus the previous interval-valued fuzzy classifier, and the classifier ability to correctly differentiate patients of the different risk categories. Conclusion: The proposed methodology is a suitable tool to face the medical diagnosis of cardiovascular diseases, since it obtains a good classification rate and it also provides an interpretable model that can be easily understood by the doctors.Publication Open Access Cátedra Mujer, Ciencia y Tecnología de la UPNA(Gobierno de Navarra, 2023) Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Gómez Fernández, Marisol; San Martín Biurrun, Idoia; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2La Cátedra Mujer, Ciencia y Tecnología de la Universidad Pública de Navarra (UPNA) tiene como objetivo aumentar la participación de las mujeres en campos de ciencia y tecnología. La cultura y la divulgación científicas son el eje principal de la actividad de la Cátedra. Dicha actividad engloba: la representación teatral Yo quiero ser científica, talleres experimentales y conferencias y exposiciones para todos los públicos y edades. Más de 6000 personas han visto la obra de teatro, más de 1500 estudiantes de ESO han participado en los talleres y el material audiovisual ha recibido más de 20000 visitas.Publication Open Access A comparative study of CO2 forecasting strategies in school classrooms: a step toward improving indoor air quality(MDPI, 2025-03-09) Garcia-Pinilla, Peio; Jurío Munárriz, Aránzazu; Paternain Dallo, Daniel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaThis paper comprehensively investigates the performance of various strategies for predicting CO2 levels in school classrooms over different time horizons by using data collected through IoT devices. We gathered Indoor Air Quality (IAQ) data from fifteen schools in Navarra, Spain between 10 January and 3 April 2022, with measurements taken at 10-min intervals. Three prediction strategies divided into seven models were trained on the data and compared using statistical tests. The study confirms that simple methodologies are effective for short-term predictions, while Machine Learning (ML)-based models perform better over longer prediction horizons. Furthermore, this study demonstrates the feasibility of using low-cost devices combined with ML models for forecasting, which can help to improve IAQ in sensitive environments such as schools.Publication Open Access Aggregation functions to combine RGB color channels in stereo matching(Optical Society of America, 2013) Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Sanz Delgado, José Antonio; Paternain Dallo, Daniel; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this paper we present a comparison study between different aggregation functions for the combination of RGB color channels in stereo matching problem. We introduce color information from images to the stereo matching algorithm by aggregating the similarities of the RGB channels which are calculated independently. We compare the accuracy of different stereo matching algorithms and aggregation functions. We show experimentally that the best function depends on the stereo matching algorithm considered, but the dual of the geometric mean excels as the most robust aggregation.