Person: Arregui Padilla, Iván
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Arregui Padilla
First Name
Iván
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
0000-0003-2933-1471
person.page.upna
9751
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Robust and flexible design for effective low-pass filters exploiting a passband replica(IEEE, 2024) Santiago Arriazu, David; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arregui Padilla, Iván; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCIn this paper, a design approach for effective low-pass filters (LPF) that use the Rth-passband replica of the stepped-impedance prototype response is presented. Traditional LPF design methods often rely on well-established techniques, but they may not always deliver the desired performance or flexibility. By incorporating the Rth-passband replica of the stepped-impedance prototype, we introduce a new perspective that opens up new possibilities in filter design. This approach has the potential to overcome some of the limitations associated with existing methods, offering improved filter performance, robustness, and novel design possibilities and flexibility. Additionally, we will showcase its practical application by designing, fabricating, and measuring a 5th-order gap waveguide LPF that employs the first replica as per the provided guidelines.Publication Open Access W-band filtering antenna based on a slot array and stacked coupled resonators using gap waveguide technology(IEEE, 2024) Santiago Arriazu, David; Fang, Mu; Zaman, Ashraf Uz; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Arregui Padilla, Iván; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThis letter proposes a new design approach for filtering antennas. The novel matching reflection coefficient based method allows the integration of filters and antennas without compromising the frequency behavior of either of these components. Moreover, this integration is done avoiding the need of lengthy optimization processes and provides a high degree of flexibility in the types of antennas that can be used. In order to validate it, two examples are provided. In both cases, a 4 th -order Chebyshev bandpass filter at 101.5 GHz implemented in stacked groove gap waveguide (GGW) configuration is used, firstly along with a single aperture antenna and, subsequently, with a slotted ridge gap waveguide (RGW) array. This second example has been manufactured to demonstrate the usefulness of the new design methodology. Excellent measured performance has been obtained for a filtering antenna at W-band for the first time.