Vanegas Tenezaca, Evelyn Dayanara

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Vanegas Tenezaca

First Name

Evelyn Dayanara

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    High resolution liquid level measurement using a multisection interferometer based on capillary fibers
    (IEEE, 2024-08-05) Vanegas Tenezaca, Evelyn Dayanara; Galarza Galarza, Marko; Dauliat, Romain; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This paper presents a novel capillary structure for liquid level measurement. The multifiber interferometric structure, which employs two capillary sections, is well-suited to the measurement of liquid levels in both short distances and with high resolution. The measurement range extends up to 60 mm with a resolution of 0.70 mm.
  • PublicationOpen Access
    Capillary-based optical fiber sensor for turbidity measurement
    (SPIE, 2025-05-22) Vanegas Tenezaca, Evelyn Dayanara; Galarza Galarza, Marko; Dauliat, Romain; Jamier, Raphael; Roy, Philippe; Cobo, Adolfo; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    This work introduces an innovative capillary or hollow core-based sensor designed to measure turbidity by using the reflection of light in its cladding. The structure consists of two different capillary sections and has been optimized to maximise the interaction of light with the external liquid. Experimentation includes data collection from different turbidity levels using the reflected spectrum. To improve the measuring results, machine learning is implemented, exploring the effectiveness of various algorithms and neural network architectures to achieve a good root mean square error.