Fernández Fernández, Francisco Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Fernández Fernández
First Name
Francisco Javier
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access d-Choquet integrals: Choquet integrals based on dissimilarities(Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Altalhi, A. H.; Pereira Dimuro, Graçaliz; Bedregal, Benjamin; Takáč, Zdenko; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13The paper introduces a new class of functions from [0,1]n to [0,n] called d-Choquet integrals. These functions are a generalization of the 'standard' Choquet integral obtained by replacing the difference in the definition of the usual Choquet integral by a dissimilarity function. In particular, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals but the use of dissimilarities provides higher flexibility and generality. We show that some d-Choquet integrals are aggregation/pre-aggregation/averaging/functions and some of them are not. The conditions under which this happens are stated and other properties of the d-Choquet integrals are studied.Publication Open Access Dissimilarity based choquet integrals(Springer, 2020) Bustince Sola, Humberto; Mesiar, Radko; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Paternain Dallo, Daniel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper, in order to generalize the Choquet integral, we replace the difference between inputs in its definition by a restricted dissimilarity function and refer to the obtained function as d-Choquet integral. For some particular restricted dissimilarity function the corresponding d-Choquet integral with respect to a fuzzy measure is just the ‘standard’ Choquet integral with respect to the same fuzzy measure. Hence, the class of all d-Choquet integrals encompasses the class of all 'standard' Choquet integrals. This approach allows us to construct a wide class of new functions, d-Choquet integrals, that are possibly, unlike the 'standard' Choquet integral, outside of the scope of aggregation functions since the monotonicity is, for some restricted dissimilarity function, violated and also the range of such functions can be wider than [0, 1], in particular it can be [0, n].Publication Open Access Mixture functions and their monotonicity(Elsevier, 2019) Špirková, Jana; Beliakov, Gleb; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasWe consider mixture functions, which are a type of weighted averages for which the corresponding weights are calculated by means of appropriate continuous functions of their inputs. In general, these mixture function need not be monotone increasing. For this reason we study su cient conditions to ensure standard, weak and directional monotonicity for speci c types of weighting functions. We also analyze directional monotonicity when di erentiability is assumed.Publication Open Access On some classes of directionally monotone functions(Elsevier, 2020) Bustince Sola, Humberto; Mesiar, Radko; Kolesárová, Anna; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Díaz, Irene; Montes Rodríguez, Susana; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasIn this work we consider some classes of functions with relaxed monotonicity conditions generalizing some other given classes of fusion functions. In particular, directionally increasing aggregation functions (called also pre-aggregation functions), directionally increasing conjunctors, or directionally increasing implications, etc., generalize the standard classes of aggregation functions, conjunctors, or implication functions, respectively. We analyze different properties of these classes of functions and we discuss a construction method in terms of linear combinations of t-norms.Publication Open Access Ordered directional monotonicity in the construction of edge detectors(Elsevier, 2021) Marco Detchart, Cedric; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Mesiar, Radko; Lafuente López, Julio; Barrenechea Tartas, Edurne; Pintor Borobia, Jesús María; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; IngenieríaIn this paper we provide a specific construction method of ordered directionally monotone functions. We show that the functions obtained with this construction method can be used to build edge detectors for grayscale images. We compare the results of these detectors to those obtained with some other ones that are widely used in the literature. Finally, we show how a consensus edge detector can be built improving the results obtained both by our proposal and by those in the literature when applied individually.