Royo Silvestre, Isaac
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Royo Silvestre
First Name
Isaac
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Fast calculation methods for the magnetic field of particle lattices(AIP Publishing, 2025-02-14) Royo Silvestre, Isaac; Gandía Aguado, David; Beato López, Juan Jesús; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaWith the rise of 3D printing and composite materials, components comprising dispersed magnetic particles have become more interesting due to the possibility to design magnetic elements of any shape with varying amounts of the actual magnetic material. However, quick and easy calculation methods are needed to design these components enabling the selection of the optimum required percentage of magnetic particles (millimeter parts contain billions of micro-sized particles). This work proposes a semi-analytical iterative method for the estimation of the magnetic field generated by magnetic composites formed by embedded magnetic particles. The model is compared in terms of accuracy and calculation speed with finite element analysis and the average magnetization model of the magnetic composite. The results are finally supported by the comparison with experimental measurements of the weak magnetic field generated by a magnetic particle lattice.Publication Open Access U-shape magnetostrictive harvester: design and experimental validation(IEEE, 2024-07-05) Gandía Aguado, David; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Royo Silvestre, Isaac; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Electromagnetic vibrational harvesters stand out due to their high-power density, long-life robust structure and low-cost design. Moreover, they can be designed using magnetostrictive materials. The mechanical vibrations cause stress on the magnetostrictive material, leading to variations in its magnetization. This, in turn, induces an electromotive force (EMF) in a well-designed pick-up coil system, thereby transforming mechanical energy into electrical energy. In spite of the potentiality of these electromagnetic harvesters, their practical implementation is limited due to the difficulties in the design optimization in terms of the device dimensions, effective stresses on the magnetostrive material, distribution and magnetic field strength of the permanent magnets and pick-up coil characteristics. Finite Element Methods (FEM) enable the estimation of the induced voltage and thus the output power as a function of harvester design parameters, allowing us to experiment with different configurations and identify optimal parameters.Publication Open Access Electromagnetic vibrational harvester based on U-shaped ferromagnetic cantilever: a novel two-magnet configuration(Elsevier, 2024-09-07) Gandía Aguado, David; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Royo Silvestre, Isaac; Cruz Blas, Carlos Aristóteles de la; Tainta Ausejo, Santiago; Gómez Polo, Cristina; Ciencias; Zientziak; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISCElectromagnetic vibrational harvesters are low-cost devices featuring high-power densities and robust structures, often used for capturing the energy of environmental vibrations (civil infrastructures, transportation, human motion, etc.,). Based on Faraday's law, energy generation relies on the modification of the magnetic field distribution within a magnetic element caused by mechanical vibrations inducing an electromotive force (EMF) in a pick-up coil. However, the practical implementation of this type of vibrational harvester is currently limited due to the reduced generated power under low-frequency vibrations. In this work, an electromagnetic vibrational harvester is experimentally characterized and analyzed employing magnetic circuit analysis. The harvester consists of a ferromagnetic U-shaped cantilever, a NdFeB magnet and a ferrite magnet used as ¿magnetic tip mass¿ to enhance the magnetic flux changes under vibrations of frequency < 100 Hz. For this configuration, an experimental voltage of ¿ 1.2 V peak-to-peak (open circuit) was obtained at a resonant frequency of 77 Hz, enabling the subsequent electronic rectification stage. Additionally, Finite Element Method (FEM) is used to explore different design possibilities including the modeling of complex geometries, mechanical properties and non-linear magnetic materials, enabling the tuning of the resonance frequency from 51 to 77 Hz, keeping constant the induced voltage.