Celaya Echarri, Mikel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Celaya Echarri

First Name

Mikel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 13
  • PublicationOpen Access
    Basketball player on-body biophysical and environmental parameter monitoring based on wireless sensor network integration
    (IEEE, 2021) Picallo Guembe, Imanol; López Iturri, Peio; Astrain Escola, José Javier; Aguirre Gallego, Erik; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Matematika eta Informatika Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Matemática e Informática; Ingeniería Eléctrica, Electrónica y de Comunicación
    Sport activities have benefited in recent years from the progressive adoption of different technological assets in order to improve individual as well as group training, collect different statistics or enhance the spectator experiences. The progressive adoption of Internet of Things paradigms can also be considered within the scope of sport activities, providing high levels of user interactivity as well as enabling cloud-based data storage and processing. In this work, a system for monitoring biophysical, kinematic and environmental parameters within the development of basketball training is presented. A set of on-body nodes with multiple sensors and wireless body area network capabilities have been designed, implemented and tested under real training conditions during a match. Wireless channel analysis results have been obtained with the aid of in house implemented deterministic 3D ray launching algorithm, providing accurate coverage/capacity estimations in relation with human body consideration in the field as well as in the stadium. Measurement results give relevant information in relation with individual player characteristics as well as with team characteristics, providing a flexible tool to improve training development of basketball.
  • PublicationOpen Access
    Design and experimental validation of a LoRaWAN fog computing based architecture for IoT enabled smart campus applications
    (MDPI, 2019) Fraga Lamas, Paula; Celaya Echarri, Mikel; López Iturri, Peio; Castedo, Luis; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Suárez Albela, Manuel; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    A smart campus is an intelligent infrastructure where smart sensors and actuators collaborate to collect information and interact with the machines, tools, and users of a university campus. As in a smart city, a smart campus represents a challenging scenario for Internet of Things (IoT) networks, especially in terms of cost, coverage, availability, latency, power consumption, and scalability. The technologies employed so far to cope with such a scenario are not yet able to manage simultaneously all the previously mentioned demanding requirements. Nevertheless, recent paradigms such as fog computing, which extends cloud computing to the edge of a network, make possible low-latency and location-aware IoT applications. Moreover, technologies such as Low-Power Wide-Area Networks (LPWANs) have emerged as a promising solution to provide low-cost and low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the Long-Range Wide-Area Network (LoRaWAN) standard is one of the most recent developments, receiving attention both from industry and academia. In this article, the use of a LoRaWAN fog computing-based architecture is proposed for providing connectivity to IoT nodes deployed in a campus of the University of A Coruña (UDC), Spain. To validate the proposed system, the smart campus has been recreated realistically through an in-house developed 3D Ray-Launching radio-planning simulator that is able to take into consideration even small details, such as traffic lights, vehicles, people, buildings, urban furniture, or vegetation. The developed tool can provide accurate radio propagation estimations within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network. The results obtained with the planning simulator can then be compared with empirical measurements to assess the operating conditions and the system accuracy. Specifically, this article presents experiments that show the accurate results obtained by the planning simulator in the largest scenario ever built for it (a campus that covers an area of 26,000 m2), which are corroborated with empirical measurements. Then, how the tool can be used to design the deployment of LoRaWAN infrastructure for three smart campus outdoor applications is explained: a mobility pattern detection system, a smart irrigation solution, and a smart traffic-monitoring deployment. Consequently, the presented results provide guidelines to smart campus designers and developers, and for easing LoRaWAN network deployment and research in other smart campuses and large environments such as smart cities.
  • PublicationOpen Access
    Deterministic wireless channel characterization towards the integration of communication capabilities to enable context aware industrial internet of thing environments
    (Springer, 2022) Picallo Guembe, Imanol; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    In order to provide interactive capabilities within the context of Internet of Thing (IoT) applications, wireless communication systems play a key role, owing to in-herent mobility, ubiquity and ease of deployment. However, to comply with Quality of Service (QoS) and Quality of Experience (QoE) metrics, coverage/capacity analysis must be performed, to account for the impact of signal blockage as well as multiple interference sources. This analysis is especially complex in the case of indoor scenarios, such as those derived from Industrial Internet of Things (IIoT). In this work, a fully volumetric approach based on hybrid deterministic 3D Ray Launching is employed providing precise wireless channel characterization and hence, system level analysis of indoor scenarios. Coverage/capacity, interference mapping and time domain characterization estimations will be derived, considering different frequencies of operation below 6 GHz. The proposed methodology will be tested against a real measurement scenario, providing full flexibility and scalability for adoption in a wide range of IIoT capable environments.
  • PublicationOpen Access
    Design and empirical validation of a LoRaWAN IoT Smart Irrigation System
    (MDPI, 2020) Fraga Lamas, Paula; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In some parts of the world, climate change has led to periods of drought that require managing efficiently the scarce water and energy resources. This paper proposes an IoT smart irrigation system specifically designed for urban areas where remote IoT devices have no direct access to the Internet or to the electrical grid, and where wireless communications are difficult due to the existence of long distances and multiple obstacles. To tackle such issues, this paper proposes a LoRaWAN-based architecture that provides long distance and communications with reduced power consumption. Specifically, the proposed system consists of IoT nodes that collect sensor data and send them to local fog computing nodes or to a remote cloud, which determine an irrigation schedule that considers factors such as the weather forecast or the moist detected by nearby nodes. It is essential to deploy the IoT nodes in locations within the provided coverage range and that guarantee good speed rates and reduced energy consumption. Due to this reason, this paper describes the use of an in-house 3D-ray launching radio-planning tool to determine the best locations for IoT nodes on a real medium-scale scenario (a university campus) that was modeled with precision, including obstacles such as buildings, vegetation, or vehicles. The obtained simulation results were compared with empirical measurements to assess the operating conditions and the radio planning tool accuracy. Thus, it is possible to optimize the wireless network topology and the overall performance of the network in terms of coverage, cost, and energy consumption.
  • PublicationOpen Access
    Deterministic propagation approach for millimeter-wave outdoor smart parking solution deployment
    (MDPI, 2020) Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; López Iturri, Peio; Alejos, Ana V.; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Impact factor as an indicator of efficiency or sustainability is entirely correlated with the continuous development of the smart city concept technology application. Intelligent transportation systems (ITSs) and particularly autonomous vehicles are expected to play an important role in this challenging environment. Fast and secure connections will be pivotal in order to achieve this new vehicular communications’ application era. The use of millimeter-wave (mmWave) frequency range is the most promising approach to allow these real-time, high-demand applications that require higher bandwidth with the minimum possible latency. However, an in-depth mmWave-channel characterization of the environment is required for a proper mmWave-based solution deployment. In this work, a complete radio wave propagation channel characterization for a mmWave smart parking solution deployment in a complex outdoor environment was assessed at a 28 GHz frequency band. The considered scenario is a parking lot placed in an open free university campus area surrounded by inhomogeneous vegetation. The vehicle and vegetation density within the scenario, in terms of inherent transceivers density and communication impairments, leads to overall system operation challenges, given by multiple communication links operation at line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. By means of an in-house developed 3D ray launching (3D-RL) algorithm, the impact of variable vegetation density is addressed, providing precise modelling estimations of large-scale multipath propagation effects in terms of received power levels and path loss. The obtained results along with the proposed simulation methodology can aid in an adequate characterization of an mmWave communication channel for new vehicular communications networks, applications, and deployments, considering the outdoor conditions as well as the impact of different vegetation densities, for current as well as for future wireless technologies.
  • PublicationOpen Access
    Design and empirical validation of a Bluetooth 5 fog computing based industrial CPS architecture for intelligent industry 4.0 shipyard workshops
    (IEEE, 2020) Fraga Lamas, Paula; López Iturri, Peio; Celaya Echarri, Mikel; Blanco Novoa, Óscar; Azpilicueta Fernández de las Heras, Leyre; Varela Barbeito, José; Falcone Lanas, Francisco; Fernández Caramés, Tiago M.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Navantia, one of largest European shipbuilders, is creating a fog computing based Industrial Cyber-Physical System (ICPS) for monitoring in real-time its pipe workshops in order to track pipes and keep their traceability. The deployment of the ICPS is a unique industrial challenge in terms of communications, since in a pipe workshop there is a significant number of metallic objects with heterogeneous typologies. There are multiple technologies that can be used to track pipes, but this article focuses on Bluetooth 5, which is a relatively new technology that represents a cost-effective solution to cope with harsh environments, since it has been significantly enhanced in terms of low power consumption, range, speed and broadcasting capacity. Thus, it is proposed a Bluetooth 5 fog computing based ICPS architecture that is designed to support physically-distributed and low-latency Industry 4.0 applications that off-load network traffic and computational resources from the cloud. In order to validate the proposed ICPS design, one of the Navantia's pipe workshops was modeled through an in-house developed 3D-ray launching radio planning simulator that allows for estimating the coverage provided by the deployed Bluetooth 5 fog computing nodes and Bluetooth 5 tags. The experiments described in this article show that the radio propagation results obtained by the simulation tool are really close to the ones obtained through empirical measurements. As a consequence, the simulation tool is able to reduce ICPS design and deployment time and provide guidelines to future developers when deploying Bluetooth 5 fog computing nodes and tags in complex industrial scenarios.
  • PublicationOpen Access
    Radio wave propagation and WSN deployment in complex utility tunnel environments
    (MDPI, 2020) Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Picallo Guembe, Imanol; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniería Matemática e Informática
    The significant growth of wireless communications systems in the last years has led to the adoption of a wide range of applications not only for the general public but, also, including utilities and administrative authorities. In this context, the notable expansion of new services for smart cities requires, in some specific cases, the construction of underground tunnels in order to enable the maintenance and operation works of utilities, as well as to reduce the visual impact within the city center. One of the main challenges is that, inherently, underground service tunnels lack coverage from exterior wireless communication systems, which can be potentially dangerous for maintenance personnel working within the tunnels. Accordingly, wireless coverage should be deployed within the underground installation in order to guarantee real-time connectivity for safety maintenance, remote surveillance or monitoring operations. In this work, wireless channel characterization for complex urban tunnel environments was analyzed based on the assessment of LoRaWAN and ZigBee technologies operating at 868 MHz. For that purpose, a real urban utility tunnel was modeled and simulated by means of an in-house three-dimensional ray-launching (3D-RL) code. The utility tunnel scenario is a complex and singular environment in terms of radio wave propagation due to the limited dimensions and metallic elements within it, such as service trays, user pathways or handrails, which were considered in the simulations. The simulated 3D-RL algorithm was calibrated and verified with experimental measurements, after which, the simulation and measurement results showed good agreement. Besides, a complete wireless sensor network (WSN) deployment within the tunnels was presented, providing remote cloud data access applications and services, allowing infrastructure security and safety work conditions. The obtained results provided an adequate radio planning approach for the deployment of wireless systems in complex urban utility scenarios, with optimal coverage and enhanced quality of service.
  • PublicationOpen Access
    Wireless information power transfer assessment by deterministic radio propagation estimations in smart city contexts
    (IEEE, 2025-03-12) Picallo Guembe, Imanol; López Iturri, Peio; Klaina, Hicham; Celaya Echarri, Mikel; Rodríguez Corbo, Fidel Alejandro; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    The development of context aware environments, such as those given in the framework of Smart Cities and Smart Regions require the use of ubiquitous connectivity and more recently, energy availability for a wide variety of Internet of Things based applications. In this work, estimations of wireless channel distributions for coverage/capacity as well as for energy availability will be presented, for outdoor as well as indoor scenarios with the aid of deterministic inhouse developed simulation tool. Volumetric assessment can be obtained, aiding in the radio network planning process, as well as in the feasibility of electromagnetic based energy harvesting solutions for Internet of Things based applications.
  • PublicationOpen Access
    Building decentralized fog computing-based smart parking systems: from deterministic propagation modeling to practical deployment
    (IEEE, 2020) Celaya Echarri, Mikel; Froiz Míguez, Iván; Azpilicueta Fernández de las Heras, Leyre; López Iturri, Peio; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The traditional process of finding a vacant parking slot is often inefficient: it increases driving time, traffic congestion, fuel consumption and exhaust emissions. To address such problems, smart parking systems have been proposed to help drivers to find available parking slots faster using latest sensing and communications technologies. However, the deployment of the communications infrastructure of a smart parking is not straightforward due to multiple factors that may affect wireless propagation. Moreover, a smart parking system needs to provide not only accurate information on available spots, but also fast responses while guaranteeing the system availability even in the case of lacking connectivity. This article describes the development of a decentralized low-latency smart parking system: from its conception, design and theoretical simulation, to its empirical validation. Thus, this work first characterizes a real-world scenario and proposes a fog computing and Internet of Things (IoT) based communications architecture to provide smart parking services. Next, a thorough analysis on the wireless channel properties is carried out by means of an in-house developed deterministic 3D-Ray Launching (3D-RL) tool. The obtained results are validated through a real-world measurement campaign and then the communications architecture is implemented by using ZigBee sensor nodes. The implemented architecture also makes use of Bluetooth Low Energy beacons, an Android app, a decentralized database and fog computing gateways, whose performance is evaluated in terms of response latency and processing rate. Results show that the proposed system is able to deliver information to the drivers fast, with no need for relying on remote servers. As a consequence, the presented development methodology and communications evaluation tool can be useful for future smart parking developers, which can determine the optimal locations of the wireless transceivers during the simulation stage and then deploy a system that can provide fast responses and decentralized services.
  • PublicationOpen Access
    Spatial V2X traffic density channel characterization for urban environments
    (IEEE, 2021) Granda, Fausto; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; López Iturri, Peio; Vargas Rosales, César; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work, Vehicle-to-everything (V2X) wireless communications performance is analyzed, in order to account for inherent scenario complexity, in the deployment phase of wireless systems towards the implementation of a Context Aware environment. An urban environment has been simulated by means of an in-house three-dimensional (3D) Ray Launching algorithm, coupled with a microscopic vehicular movement simulator, accounting for embedded urban elements as well as variable traffic densities within the complex environment. Large-scale and small-scale results are presented, as well as statistical analysis of the impact of different traffic densities. A campaign of measurements in the same real scenario has been performed, showing good agreement with wireless channel estimations for the considered frequency. These results can aid in V2X deployment configurations in urban environments, in order to minimize power consumption, optimize interference levels and increase overall system performance.