Imas González, José Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Imas González

First Name

José Javier

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    All-fiber ellipsometer for nanoscale dielectric coatings
    (Chinese Academy of Sciences, 2023) Imas González, José Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Albert, Jacques; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Multiple mode resonance shifts in tilted fiber Bragg gratings (TFBGs) are used to simultaneously measure the thickness and the refractive index of TiO2 thin films formed by Atomic Layer Deposition (ALD) on optical fibers. This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses (T) and values of the real part of the refractive index (n). The minimization of an error function computed for each (n, T) pair then provides a solution for the thickness and refractive index of the deposited film and, a posteriori, to verify the deposition rate throughout the process from the time evolution of the wavelength shift data. Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself. The final values obtained by the TFBG (n = 2.25, final thickness of 185 nm) were both within 4% of the validation measurements. This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices, such as the optical fiber sensor field. Furthermore, the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates, such as ALD.
  • PublicationOpen Access
    Mode transition during deposition of nanoscale ITO coatings on tilted fiber Bragg gratings
    (Optica Publishing Group, 2022) Imas González, José Javier; Albert, Jacques; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The mode transition phenomenon is experimentally demonstrated in tilted fiber Bragg gratings (TFBG) through the deposition of an indium tin oxide (ITO) thin film employing a DC sputtering machine.
  • PublicationOpen Access
    Tunable sensitivity in long period fiber gratings during mode transition with low refractive index intermediate layer
    (IEEE, 2022) Del Villar, Ignacio; Montoya-Cardona, Jorge; Imas González, José Javier; Reyes-Vera, Erick; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Cruz, José Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Double-clad fibers where the second cladding has a lower refractive index than the first cladding, prove to be ideal structures for potentiating and tuning the sensitivity in long-period fiber gratings (LPFGs) operating in mode transition. When a thin film is deposited on the optical fiber, the second cladding performs acts as a barrier that initially prevents the transition to guidance in the thin film of one of the modes guided in the first cladding. Finally, the transition to guidance occurs with a sensitivity increase, in analogy to the tunnel effect observed in semiconductors. This improvement has been demonstrated both as a function of the thin film thickness and the surrounding medium refractive index, with enhancement factors of 4 and 2, respectively. This idea reinforces the performance of LPFGs, adding a new degree of freedom to the mode transition and the dispersion turning point phenomena. Moreover, the control of the variation of the effective index of cladding modes could be applied in other structures, such as tilted-fiber gratings or evanescent wave sensors.
  • PublicationOpen Access
    Mode transitions and thickness measurements during deposition of nanoscale TiO2 coatings on tilted fiber Bragg gratings
    (IEEE, 2022) Imas González, José Javier; Albert, Jacques; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The mode transition is a phenomenon observed in thin film coated long period fiber gratings (LPGs) and singlemode multimode single-mode (SMS) fibers for certain values of the coating thickness and refractive index, resulting in increased sensitivity for sensing applications. It is shown here that mode transitions occur simultaneously for a large number of mode resonances in the transmission spectra of tilted fiber Bragg gratings (TFBG) measured during the deposition of ~350nm thick TiO2 coatings by Atomic Layer Deposition (ALD). In TFBGs, the mode transition shows up as an acceleration of the resonance wavelength shift vs thickness, but without fading of the resonance amplitude. Furthermore, the results show that the mode transition for cladding modes with predominantly “TE” polarization at the cladding boundary is significantly sharper than that of predominantly “TM” polarized modes and that it occurs at a smaller coating thickness (<100 nm vs >200 nm). Finally, using a separately determined coating refractive index (2.14, by ellipsometry on witness flats deposited simultaneously) and simulations of the resonance shifts of the TFBG with coating thickness, it is demonstrated that a TFBG connected to a spectral interrogation system can be used to measure the growth of a coating on the surface of the fiber in real time.