Etxeberria Andueza, Jaione
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Etxeberria Andueza
First Name
Jaione
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Using mortality to predict incidence for rare and lethal cancers in very small areas(VCH Publishers, 2022) Etxeberria Andueza, Jaione; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Incidence and mortality figures are needed to get a comprehensive overview of cancer burden. In many countries, cancer mortality figures are routinely recorded by statistical offices, whereas incidence depends on regional cancer registries. However, due to the complexity of updating cancer registries, incidence numbers become available 3 or 4 years later than mortality figures. It is, therefore, necessary to develop reliable procedures to predict cancer incidence at least until the period when mortality data are available. Most of the methods proposed in the literature are designed to predict total cancer (except nonmelanoma skin cancer) or major cancer sites. However, less frequent lethal cancers, such as brain cancer, are generally excluded from predictions because the scarce number of cases makes it difficult to use univariate models. Our proposal comes to fill this gap and consists of modeling jointly incidence and mortality data using spatio-temporal models with spatial and age shared components. This approach allows for predicting lethal cancers improving the performance of individual models when data are scarce by taking advantage of the high correlation between incidence and mortality. A fully Bayesian approach based on integrated nested Laplace approximations is considered for model fitting and inference. A validation process is also conducted to assess the performance of alternative models. We use the new proposals to predict brain cancer incidence rates by gender and age groups in the health units of Navarre and Basque Country (Spain) during the period 2005-2008.Publication Open Access Brain and central nervous system cancer incidence in Navarre (Spain), 1973-2008 and projections for 2014(Ivyspring, 2015) Etxeberria Andueza, Jaione; San Roman, E.; Burgui, Rosana; Guevara Eslava, Marcela; Moreno Iribas, Conchi; Urbina, M. J.; Ardanaz, Eva; Estadística e Investigación Operativa; Estatistika eta Ikerketa OperatiboaDifferent studies have pointed out Navarre as one of the regions of Spain with the highest incidence rates of brain and other central nervous system (CNS) cancer. Trend analysis for cancer incidence rates for long periods of time, might help determining risk factors as well as, assessing prevention actions involved in this disease. The objective of this study was to describe the incidence of brain and CNS cancer using data from the population-based cancer registry of Navarre, (Spain) during the period 1973-2008 and provide forecast figures up to-2014. Crude and age-standardized (world population) incidence rates of brain cancer per 100,000 person-years were calculated by the direct method separately by gender, area (Pamplona and others), and age-groups. Penalized splines for smoothing rates in the temporal dimensions were applied in order to estimate and forecast cancer incidence rates. Age-adjusted incidence rates showed an increase over the study and forecast periods in both sexes more marked in women than in men. Higher incidence rates were observed in men compared with women but the differences became smaller with time. The increase was due to the rise of rates in the oldest age groups since the rates for younger age groups remained stable or decreased over time. As the entire aetiology of brain and other CNS cancer is not still clear, keep promoting healthful lifestyles for cancer primary prevention among the whole population is necessary.