Person:
Toledo Arana, Alejandro

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Toledo Arana

First Name

Alejandro

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

ORCID

0000-0001-8148-6281

person.page.upna

5497

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor
    (Public Library of Science, 2012) Valle Turrillas, Jaione; Latasa Osta, Cristina; Gil Puig, Carmen; Toledo Arana, Alejandro; Solano Goñi, Cristina; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilmassociated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections.
  • PublicationOpen Access
    Bacterial biofilm functionalization through Bap amyloid engineering
    (Springer Nature, 2022) Matilla Cuenca, Leticia; Taglialegna, Agustina; Gil Puig, Carmen; Toledo Arana, Alejandro; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ciencias de la Salud; Osasun Zientziak
    Biofilm engineering has emerged as a controllable way to fabricate living structures with programmable functionalities. The amyloidogenic proteins comprising the biofilms can be engineered to create self-assembling extracellular functionalized surfaces. In this regard, facultative amyloids, which play a dual role in biofilm formation by acting as adhesins in their native conformation and as matrix scaffolds when they polymerize into amyloid-like fibrillar structures, are interesting candidates. Here, we report the use of the facultative amyloid-like Bap protein of Staphylococcus aureus as a tool to decorate the extracellular biofilm matrix or the bacterial cell surface with a battery of functional domains or proteins. We demonstrate that the localization of the functional tags can be change by simply modulating the pH of the medium. Using Bap features, we build a tool for trapping and covalent immobilizing molecules at bacterial cell surface or at the biofilm matrix based on the SpyTag/SpyCatcher system. Finally, we show that the cell wall of several Gram-positive bacteria could be functionalized through the external addition of the recombinant engineered Bap-amyloid domain. Overall, this work shows a simple and modulable system for biofilm functionalization based on the facultative protein Bap. © 2022, The Author(s).