Person:
Toledo Arana, Alejandro

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Toledo Arana

First Name

Alejandro

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

ORCID

0000-0001-8148-6281

person.page.upna

5497

Name

Search Results

Now showing 1 - 10 of 27
  • PublicationOpen Access
    A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria
    (Oxford University Press, 2013) Quiles Puchalt, Nuria; Tormo Más, María Ángeles; Campoy Sánchez, Susana; Toledo Arana, Alejandro; Monedero, Vicente; Lasa Uzcudun, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the ter S gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.
  • PublicationOpen Access
    The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus
    (Oxford University Press, 2018) Caballero Sánchez, Carlos; Menéndez Gil, Pilar; Catalán Moreno, Arancha; Vergara Irigaray, Marta; García Martínez, Begoña; Segura, Víctor; Irurzun Domínguez, Naiara; Villanueva San Martín, Maite; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    RNA-binding proteins (RBPs) are essential to finetune gene expression. RBPs containing the coldshock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBPimmunoprecipitation- microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA posttranscriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5 UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5 UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.
  • PublicationOpen Access
    Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor
    (Public Library of Science, 2012) Valle Turrillas, Jaione; Latasa Osta, Cristina; Gil Puig, Carmen; Toledo Arana, Alejandro; Solano Goñi, Cristina; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilmassociated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections.
  • PublicationOpen Access
    Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections
    (American Society for Microbiology, 2009) Vergara Irigaray, Marta; Valle Turrillas, Jaione; Merino Barberá, Nekane; Latasa Osta, Cristina; García Martínez, Begoña; Ruiz de los Mozos Aliaga, Igor; Solano Goñi, Cristina; Toledo Arana, Alejandro; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Staphylococcus aureus can establish chronic infections on implanted medical devices due to its capacity to form biofilms. Analysis of the factors that assemble cells into a biofilm has revealed the occurrence of strains that produce either a polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG) exopolysaccharide- or a protein-dependent biofilm. Examination of the influence of matrix nature on the biofilm capacities of embedded bacteria has remained elusive, because a natural strain that readily converts between a polysaccharide- and a protein-based biofilm has not been studied. Here, we have investigated the clinical methicillin (meticillin)-resistant Staphylococcus aureus strain 132, which is able to alternate between a proteinaceous and an exopolysaccharidic biofilm matrix, depending on environmental conditions. Systematic disruption of each member of the LPXTG surface protein family identified fibronectin-binding proteins (FnBPs) as components of a proteinaceous biofilm formed in Trypticase soy broth-glucose, whereas a PIA/PNAG-dependent biofilm was produced under osmotic stress conditions. The induction of FnBP levels due to a spontaneous agr deficiency present in strain 132 and the activation of a LexA-dependent SOS response or FnBP overexpression from a multicopy plasmid enhanced biofilm development, suggesting a direct relationship between the FnBP levels and the strength of the multicellular phenotype. Scanning electron microscopy revealed that cells growing in the FnBP-mediated biofilm formed highly dense aggregates without any detectable extracellular matrix, whereas cells in a PIA/PNAG-dependent biofilm were embedded in an abundant extracellular material. Finally, studies of the contribution of each type of biofilm matrix to subcutaneous catheter colonization revealed that an FnBP mutant displayed a significantly lower capacity to develop biofilm on implanted catheters than the isogenic PIA/PNAG-deficient mutant.
  • PublicationOpen Access
    Coordinated cyclic-di-GMP repression of salmonella motility through YcgR and cellulose
    (American Society for Microbiology, 2013) Zorraquino Salvo, Violeta; García Martínez, Begoña; Latasa Osta, Cristina; Echeverz Sarasúa, Maite; Toledo Arana, Alejandro; Valle Turrillas, Jaione; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: 1312/2010
    Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.
  • PublicationOpen Access
    An effort to make sense of antisense transcription in bacteria
    (Taylor & Francis, 2012) Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; Gingeras, Thomas R.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Analysis of bacterial transcriptomes have shown the existence of a genome-wide process of overlapping transcription due to the presence of antisense RNAs, as well as mRNAs that overlapped in their entire length or in some portion of the 5′- and 3′-UTR regions. The biological advantages of such overlapping transcription are unclear but may play important regulatory roles at the level of transcription, RNA stability and translation. In a recent report, the human pathogen Staphylococcus aureus is observed to generate genome-wide overlapping transcription in the same bacterial cells leading to a collection of short RNA fragments generated by the endoribonuclease III, RNase III. This processing appears most prominently in Gram-positive bacteria. The implications of both the use of pervasive overlapping transcription and the processing of these double stranded templates into short RNAs are explored and the consequences discussed.
  • PublicationOpen Access
    In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling
    (American Society for Microbiology, 2023) Rapún Araiz, Beatriz; Sorzabal-Bellido, Ioritz; Asensio López, Javier; Lázaro-Díez, María; Ariz Galilea, Mikel; Sobejano de la Merced, Carlos; Euba, Begoña; Fernández Calvet, Ariadna; Cortés Domínguez, Iván; Burgui Erice, Saioa; Toledo Arana, Alejandro; Ortiz de Solórzano, Carlos; Garmendia García, Juncal; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Standardized clinical procedures for antibiotic administration rely on pathogen identification and antibiotic susceptibility testing, often performed on single-colony bacterial isolates. For respiratory pathogens, this could be questionable, as chronic patients may be persistently colonized by multiple clones or lineages from the same bacterial pathogen species. Indeed, multiple strains of nontypeable Haemophilus influenzae, with different antibiotic susceptibility profiles, can be co-isolated from cystic fibrosis and chronic obstructive pulmonary disease sputum specimens. Despite this clinical evidence, we lack information about the dynamics of H. influenzae polyclonal infections, which limits the optimization of therapeutics. Here, we present the engineering and validation of a plasmid toolkit (pTBH, toolbox for Haemophilus), with standardized modules consisting of six reporter genes for fluorescent or bioluminescent labeling of H. influenzae. This plasmid set was independently introduced in a panel of genomically and phenotypically different H. influenzae strains, and two of them were used as a proof of principle to analyze mixed biofilm growth architecture and antibiotic efficacy, and to visualize the dynamics of alveolar epithelial co-infection. The mixed biofilms showed a bilayer architecture, and antibiotic efficacy correlated with the antibiotic susceptibility of the respective single-species strains. Furthermore, differential kinetics of bacterial intracellular location within subcellular acidic compartments were quantified upon co-infection of cultured airway epithelial cells. Overall, we present a panel of novel plasmid tools and quantitative image analysis methods with the potential to be used in a whole range of bacterial host species, assay types, and¿or conditions and generate meaningful information for clinically relevant settings.
  • PublicationOpen Access
    Bacillus thuringiensis Cyt proteins as enablers of activity of Cry and Tpp toxins against Aedes albopictus
    (2023) Lai, Liliana; Villanueva, Maite; Muruzabal Galarza, Ane; Fernández González, Ana Beatriz; Unzue Pozas, Argiñe; Toledo Arana, Alejandro; Caballero Murillo, Primitivo; Caballero Sánchez, Carlos; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Aedes albopictus is a species of mosquito, originally from Southeast Asia, that belongs to the Culicidae family and the Dipteran insect order. The distribution of this vector has rapidly changed over the past decade, making most of the temperate territories in the world vulnerable to important human vector-borne diseases such as dengue, yellow fever, zika or chikungunya. Bacillus thuringiensis var. israeliensis (Bti)-based insecticides represent a realistic alternative to the most common synthetic insecticides for the control of mosquito larvae. However, several studies have revealed emerging resistances to the major Bti Crystal proteins such as Cry4Aa, Cry4Ba and Cry11Aa, making the finding of new toxins necessary to diminish the exposure to the same toxicity factors overtime. Here, we characterized the individual activity of Cyt1Aa, Cry4Aa, Cry4Ba and Cry11Aa against A. albopictus and found a new protein, Cyt1A-like, that increases the activity of Cry11Aa more than 20-fold. Additionally, we demonstrated that Cyt1A-like facilitates the activity three new Bti toxins: Cry53-like, Cry56A-like and Tpp36-like. All in all, these results provide alternatives to the currently available Bti products for the control of mosquito populations and position Cyt proteins as enablers of activity for otherwise non-active crystal proteins.
  • PublicationOpen Access
    Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system
    (American Society for Microbiology, 2005) Toledo Arana, Alejandro; Merino Barberá, Nekane; Vergara Irigaray, Marta; Débarbouillé, Michel; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    The biofilm formation capacity of Staphylococcus aureus clinical isolates is considered an important virulence factor for the establishment of chronic infections. Environmental conditions affect the biofilm formation capacity of S. aureus, indicating the existence of positive and negative regulators of the process. The majority of the screening procedures for identifying genes involved in biofilm development have been focused on genes whose presence is essential for the process. In this report, we have used random transposon mutagenesis and systematic disruption of all S. aureus two-component systems to identify negative regulators of S. aureus biofilm development in a chemically defined medium (Hussain-Hastings-White modified medium [HHWm]). The results of both approaches coincided in that they identified arlRS as a repressor of biofilm development under both steady-state and flow conditions. The arlRS mutant exhibited an increased initial attachment as well as increased accumulation of poly-N-acetylglucosamine (PNAG). However, the biofilm formation of the arlRS mutant was not affected when the icaADBC operon was deleted, indicating that PNAG is not an essential compound of the biofilm matrix produced in HHWm. Disruption of the major autolysin gene, atl, did not produce any effect on the biofilm phenotype of an arlRS mutant. Epistatic experiments with global regulators involved in staphylococcal-biofilm formation indicated that sarA deletion abolished, whereas agr deletion reinforced, the biofilm development promoted by the arlRS mutation.
  • PublicationOpen Access
    Protein A-mediated multicellular behavior in Staphylococcus aureus
    (American Society for Microbiology, 2008) Merino Barberá, Nekane; Toledo Arana, Alejandro; Vergara Irigaray, Marta; Valle Turrillas, Jaione; Solano Goñi, Cristina; Calvo, Enrique; Lopez, Juan Antonio; Foster, Timothy J.; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.