Goicoa Mangado, Tomás

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Goicoa Mangado

First Name

Tomás

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    A two-stage approach to estimate spatial and spatio-temporal disease risks in the presence of local discontinuities and clusters
    (SAGE, 2018-04-13) Adin Urtasun, Aritz; Lee, Duncan; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    Disease risk maps for areal unit data are often estimated from Poisson mixed models with local spatial smoothing, for example by incorporating random effects with a conditional autoregressive prior distribution. However, one of the limitations is that local discontinuities in the spatial pattern are not usually modelled, leading to over-smoothing of the risk maps and a masking of clusters of hot/coldspot areas. In this paper, we propose a novel two-stage approach to estimate and map disease risk in the presence of such local discontinuities and clusters. We propose approaches in both spatial and spatio-temporal domains, where for the latter the clusters can either be fixed or allowed to vary over time. In the first stage, we apply an agglomerative hierarchical clustering algorithm to training data to provide sets of potential clusters, and in the second stage, a two-level spatial or spatio-temporal model is applied to each potential cluster configuration. The superiority of the proposed approach with regard to a previous proposal is shown by simulation, and the methodology is applied to two important public health problems in Spain, namely stomach cancer mortality across Spain and brain cancer incidence in the Navarre and Basque Country regions of Spain.
  • PublicationOpen Access
    In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results
    (Springer, 2018) Goicoa Mangado, Tomás; Adin Urtasun, Aritz; Ugarte Martínez, María Dolores; Hodges, James S.; Institute for Advanced Materials and Mathematics - INAMAT2
    Disease mapping studies the distribution of relative risks or rates in space and time, and typically relies on generalized linear mixed models (GLMMs) including fixed effects and spatial, temporal, and spatio-temporal random effects. These GLMMs are typically not identifiable and constraints are required to achieve sensible results. However, automatic specification of constraints can sometimes lead to misleading results. In particular, the penalized quasi-likelihood fitting technique automatically centers the random effects even when this is not necessary. In the Bayesian approach, the recently-introduced integrated nested Laplace approximations computing technique can also produce wrong results if constraints are not wellspecified. In this paper the spatial, temporal, and spatiotemporal interaction random effects are reparameterized using the spectral decompositions of their precision matrices to establish the appropriate identifiability constraints. Breast cancer mortality data from Spain is used to illustrate the ideas.
  • PublicationOpen Access
    Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns
    (SAGE, 2019) Goicoa Mangado, Tomás; Adin Urtasun, Aritz; Etxeberria Andueza, Jaione; Militino, Ana F.; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    In this paper age-space-time models based on one and two-dimensional P-splines with B-spline bases are proposed for smoothing mortality rates, where both xed relative scale and scale invariant two-dimensional penalties are examined. Model tting and inference are carried out using integrated nested Laplace approximations (INLA), a recent Bayesian technique that speeds up computations compared to McMC methods. The models will be illustrated with Spanish breast cancer mortality data during the period 1985-2010, where a general decline in breast cancer mortality has been observed in Spanish provinces in the last decades. The results reveal that mortality rates for the oldest age groups do not decrease in all provinces.