Goicoa Mangado, Tomás
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Goicoa Mangado
First Name
Tomás
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
16 results
Search Results
Now showing 1 - 10 of 16
Publication Open Access Cytokinins are involved in drought tolerance of Pinus radiata plants originating from embryonal masses induced at high temperatures(Oxford University Press, 2021) Castander Olarieta, Ander; Moncaleán, Paloma; Pereira, Catia; Pěnčík, A.; Petřík, I.; Pavlović, I.; Novák, Ondrej; Strnad,Miroslav; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Montalbán, Itziar A.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaVegetative propagation through somatic embryogenesis is an effective method to produce elite varieties and can be applied as a tool to study the response of plants to different stresses. Several studies show that environmental changes during embryogenesis could determine future plant development. Moreover, we previously reported that physical and chemical conditions during somatic embryogenesis can determine the protein, hormone and metabolite profiles, as well as the micromorphological and ultrastructural organization of embryonal masses and somatic embryos. In this sense, phytohormones are key players throughout the somatic embryogenesis process as well as during numerous stress-adaptation responses. In this work, we first applied different higherature regimes (30 °C, 4 weeks; 40 °C, 4 days; 50 °C, 5 min) during induction of Pinus radiata D. Don somatic embryogenesis, together with control temperature (23 °C). Then, the somatic plants regenerated from initiated embryogenic cell lines and cultivated in greenhouse conditions were subjected to drought stress and control treatments to evaluate survival, growth and several physiological traits (relative water content, water potential, photosynthesis, stomatal conductance and transpiration). Based on those preliminary results, even more extreme higherature regimes were applied during induction (40 °C, 4 h; 50 °C, 30 min; 60 °C, 5 min) and the corresponding cytokinin profiles of initiated embryonal masses from different lines were analysed. The results showed that the temperature regime during induction had delayed negative effects on drought resilience of somatic plants as indicated by survival, photosynthetic activity and water- use efficiency. However, high temperatures for extended periods of time enhanced subsequent plant growth in well-watered conditions. Higherature regime treatments induced significant differences in the profile of total cytokinin bases, N6-isopentenyladenine, cis-zeatin riboside and trans-zeatin riboside. We concluded that phytohormones could be potential regulators of stress-response processes during initial steps of somatic embryogenesis and that they may have delayed implications in further developmental processes, determining the performance of the generated plants.Publication Open Access Induction of radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in DNA methylation/hydroxymethylation and differential expression of stress-related genes(MDPI, 2020) Castander Olarieta, Ander; Pereira, Catia; Sales, Ester; Meijón, Mónica; Arrillaga, Isabel; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Cañal, María Jesús; Moncaleán, Paloma; Montalbán, Itziar A.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23◦ C, eight weeks, control; 40◦ C, 4 h; 60◦ C, 5 min) and the global methylation and hydroxymethylation levels of emerging embryonal masses and somatic plants were analysed using LC-ESI-MS/ MS-MRM. In this context, the expression pattern of six genes previously described as stress-mediators was studied throughout the embryogenic process until plant level to assess whether the observed epigenetic changes could have provoked a sustained alteration of the transcriptome. Results indicated that the highest temperatures led to hypomethylation of both embryonal masses and somatic plants. Moreover, we detected for the first time in a pine species the presence of 5-hydroxymethylcytosine, and revealed its tissue specificity and potential involvement in heat-stress responses. Additionally, a heat shock protein-coding gene showed a down-regulation tendency along the process, with a special emphasis given to embryonal masses at first subculture and ex vitro somatic plants. Likewise, the transcripts of several proteins related with translation, oxidative stress response, and drought resilience were differentially expressed.Publication Open Access Bayesian inference in multivariate spatio-temporal areal models using INLA: analysis of gender-based violence in small areas(Springer, 2020) Vicente Fuenzalida, Gonzalo; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasMultivariate models for spatial count data are currently receiving attention in disease mapping to model two or more diseases jointly. They have been thoroughly studied from a theoretical point of view, but their use in practice is still limited because they are computationally expensive and, in general, they are not implemented in standard software to be used routinely. Here, a new multivariate proposal, based on the recently derived M models for spatial data, is developed for spatio-temporal areal data. The model takes account of the correlation between the spatial and temporal patterns of the phenomena being studied, and it also includes spatio-temporal interactions. Though multivariate models have been traditionally fitted using Markov chain Monte Carlo techniques, here we propose to adopt integrated nested Laplace approximations to speed up computations as results obtained using both fitting techniques were nearly identical. The techniques are used to analyse two forms of crimes against women in India. In particular, we focus on the joint analysis of rapes and dowry deaths in Uttar Pradesh, the most populated Indian state, during the years 2001-2014.Publication Open Access La necesidad de un manifiesto a favor de la alfabetización estadística: editorial(Sociedad Estadística e Investigación Operativa (SEIO), 2025-03-27) Casals, Martí ; Daunis i Estadella, Pepus; Galé, Carmen; Goicoa Mangado, Tomás; Patino-Alonso, Carmen; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Imagina leer el siguiente titular en un periódico: “Las personas que consumen café tienen un 50% menos de probabilidad de desarrollar ciertas enfermedades”. A partir de esta lectura, decides aumentar tu consumo diario de café. Sin embargo, antes de tomar esa decisión hay que conocer cómo se ha llegado a dicha conclusión: cuál es el tamaño de la muestra, el diseño del estudio, sobre qué población se aplica, el método de recolección de datos, y valorar si es posible establecer relaciones causales. Este ejemplo ilustra como la falta de conocimiento sobre el procedimiento puede comprometer la validez del estudio y se puede traducir en una interpretación incorrecta o unos resultados sesgados. Una comunicación deficiente puede llevar decisiones mal fundamentadas, incluso en áreas críticas como la salud y el bienestar (Spiegelhalter, 2019).Publication Open Access Space-time interactions in bayesian disease mapping with recent tools: making things easier for practitioners(Edward Arnold, 2022) Urdangarin Iztueta, Arantxa; Ugarte Martínez, María Dolores; Goicoa Mangado, Tomás; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasSpatio-temporal disease mapping studies the distribution of mortality or incidence risks in space and its evolution in time, and it usually relies on fitting hierarchical Poisson mixed models. These models are complex for practitioners as they generally require adding constraints to correctly identify and interpret the different model terms. However, including constraints may not be straightforward in some recent software packages. This paper focuses on NIMBLE, a library of algorithms that contains among others a configurable system for Markov chain Monte Carlo (MCMC) algorithms. In particular, we show how to fit different spatio-temporal disease mapping models with NIMBLE making emphasis on how to include sum-to-zero constraints to solve identifiability issues when including spatio-temporal interactions. Breast cancer mortality data in Spain during the period 1990-2010 is used for illustration purposes. A simulation study is also conducted to compare NIMBLE with R-INLA in terms of parameter estimates and relative risk estimation. The results are very similar but differences are observed in terms of computing time.Publication Open Access Small area variations in non-affective first-episode psychosis: the role of socioeconomic and environmental factors(Springer, 2023) Gutiérrez, Gerardo; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Aranguren Conde, Lidia; Corrales, Asier; Gil Berrozpe, Gustavo José; Librero, Julián; Sánchez Torres, Ana María; Peralta Martín, Víctor; García de Jalón, Elena; Cuesta, Manuel J.; Martínez, Matilde; Otero, María; Azcárate, Leire; Pereda, Nahia; Monclús, Fernando; Moreno, Laura; Fernández, Alba; Ariz, Mari Cruz; Sabaté, Alba; Aquerreta, Ainhoa; Aguirre, Izaskun; Lizarbe, Tadea; Begué, María José; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Background: There is strong evidence supporting the association between environmental factors and increased risk of non-affective psychotic disorders. However, the use of sound statistical methods to account for spatial variations associated with environmental risk factors, such as urbanicity, migration, or deprivation, is scarce in the literature. Methods: We studied the geographical distribution of non-affective first-episode psychosis (NA-FEP) in a northern region of Spain (Navarra) during a 54-month period considering area-level socioeconomic indicators as putative explanatory variables. We used several Bayesian hierarchical Poisson models to smooth the standardized incidence ratios (SIR). We included neighborhood-level variables in the spatial models as covariates. Results: We identified 430 NA-FEP cases over a 54-month period for a population at risk of 365,213 inhabitants per year. NA-FEP incidence risks showed spatial patterning and a significant ecological association with the migrant population, unemployment, and consumption of anxiolytics and antidepressants. The high-risk areas corresponded mostly to peripheral urban regions; very few basic health sectors of rural areas emerged as high-risk areas in the spatial models with covariates. Discussion: Increased rates of unemployment, the migrant population, and consumption of anxiolytics and antidepressants showed significant associations linked to the spatial-geographic incidence of NA-FEP. These results may allow targeting geographical areas to provide preventive interventions that potentially address modifiable environmental risk factors for NA-FEP. Further investigation is needed to understand the mechanisms underlying the associations between environmental risk factors and the incidence of NA-FEP.Publication Open Access Using mortality to predict incidence for rare and lethal cancers in very small areas(VCH Publishers, 2022) Etxeberria Andueza, Jaione; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2Incidence and mortality figures are needed to get a comprehensive overview of cancer burden. In many countries, cancer mortality figures are routinely recorded by statistical offices, whereas incidence depends on regional cancer registries. However, due to the complexity of updating cancer registries, incidence numbers become available 3 or 4 years later than mortality figures. It is, therefore, necessary to develop reliable procedures to predict cancer incidence at least until the period when mortality data are available. Most of the methods proposed in the literature are designed to predict total cancer (except nonmelanoma skin cancer) or major cancer sites. However, less frequent lethal cancers, such as brain cancer, are generally excluded from predictions because the scarce number of cases makes it difficult to use univariate models. Our proposal comes to fill this gap and consists of modeling jointly incidence and mortality data using spatio-temporal models with spatial and age shared components. This approach allows for predicting lethal cancers improving the performance of individual models when data are scarce by taking advantage of the high correlation between incidence and mortality. A fully Bayesian approach based on integrated nested Laplace approximations is considered for model fitting and inference. A validation process is also conducted to assess the performance of alternative models. We use the new proposals to predict brain cancer incidence rates by gender and age groups in the health units of Navarre and Basque Country (Spain) during the period 2005-2008.Publication Open Access Multivariate Bayesian spatio-temporal P-spline models to analyze crimes against women(Oxford University Press, 2021) Vicente Fuenzalida, Gonzalo; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasUnivariate spatio-temporal models for areal count data have received great attention in recent years for estimating risks. However, models for studying multivariate responses are less commonly used mainly due to the computational burden. In this article, multivariate spatio-temporal P-spline models are proposed to study different forms of violence against women. Modeling distinct crimes jointly improves the precision of estimates over univariate models and allows to compute correlations among them. The correlation between the spatial and the temporal patterns may suggest connections among the different crimes that will certainly benefit a thorough comprehension of this problem that affects millions of women around the world. The models are fitted using integrated nested Laplace approximations and are used to analyze four distinct crimes against women at district level in the Indian state of Maharashtra during the period 2001-2013.Publication Open Access Alleviating confounding in spatio-temporal areal models with an application on crimes against women in India(SAGE Publications, 2021) Adin Urtasun, Aritz; Goicoa Mangado, Tomás; Hodges, James S.; Schnell, Patrick M.; Ugarte Martínez, María Dolores; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasAssessing associations between a response of interest and a set of covariates in spatial areal models is the leitmotiv of ecological regression. However, the presence of spatially correlated random effects can mask or even bias estimates of such associations due to confounding effects if they are not carefully handled. Though potentially harmful, confounding issues have often been ignored in practice leading to wrong conclusions about the underlying associations between the response and the covariates. In spatio-temporal areal models, the temporal dimension may emerge as a new source of confounding, and the problem may be even worse. In this work, we propose two approaches to deal with confounding of fixed effects by spatial and temporal random effects, while obtaining good model predictions. In particular, restricted regression and an apparently—though in fact not—equivalent procedure using constraints are proposed within both fully Bayes and empirical Bayes approaches. The methods are compared in terms of fixed-effect estimates and model selection criteria. The techniques are used to assess the association between dowry deaths and certain socio-demographic covariates in the districts of Uttar Pradesh, India.Publication Open Access Evaluating recent methods to overcome spatial confounding(Springer, 2022) Urdangarin Iztueta, Arantxa; Goicoa Mangado, Tomás; Ugarte Martínez, María Dolores; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe concept of spatial confounding is closely connected to spatial regression, although no general definition has been established. A generally accepted idea of spatial confounding in spatial regression models is the change in fixed effects estimates that may occur when spatially correlated random effects collinear with the covariate are included in the model. Different methods have been proposed to alleviate spatial confounding in spatial linear regression models, but it is not clear if they provide correct fixed effects estimates. In this article, we consider some of those proposals to alleviate spatial confounding such as restricted regression, the spatial+ model, and transformed Gaussian Markov random fields. The objective is to determine which one provides the best estimates of the fixed effects. Dowry death data in Uttar Pradesh in 2001, stomach cancer incidence data in Slovenia in the period 1995–2001 and lip cancer incidence data in Scotland between the years 1975–1980 are analyzed. Several simulation studies are conducted to evaluate the performance of the methods in different scenarios of spatial confounding. Results reflect that the spatial+ method seems to provide fixed effects estimates closest to the true value although standard errors could be inflated