Liberal Olleta, Íñigo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Liberal Olleta
First Name
Íñigo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access New horizons in near-zero refractive index photonics and hyperbolic metamaterials(American Chemical Society, 2023) Lobet, Michaël; Kinsey, Nathaniel; Liberal Olleta, Íñigo; Caglayan, Humeyra; Huidobro, Paloma A.; Galiffi, Emanuele; Mejía-Salazar, Jorge Ricardo; Palermo, Giovanna; Jacob, Zubin; Maccaferri, Nicolò; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.Publication Open Access Soft surfaces and enhanced nonlinearity enabled via epsilon-near-zero media doped with zero-area perfect electric conductor inclusions(Optical Society of America, 2020) Nahvi, Ehsan; Liberal Olleta, Íñigo; Engheta, Nader; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIntroducing a dielectric inclusion inside an epsilon-near-zero (ENZ) host has been shown to dramatically affect the effective permeability of the host for a TM-polarized incident wave, a concept coined as photonic doping [Science 355, 1058 (2017)]. Here, we theoretically study the prospect of doping the ENZ host with infinitesimally thin perfect electric conductor (PEC) inclusions, which we call 'zero-area' PEC dopants. First, we theoretically demonstrate that zero-area PEC dopants enable the design of soft surfaces with an arbitrary cross-sectional geometry. Second, we illustrate the possibility of engineering the PEC dopants with the goal of transforming the electric field distribution inside the ENZ while maintaining a spatially invariant magnetic field. We exploit this property to enhance the effective nonlinearity of the ENZ host.