Liberal Olleta, Íñigo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Liberal Olleta

First Name

Íñigo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Fundamental radiative processes in near-zero-index media of various dimensionalities
    (American Chemical Society, 2020) Lobet, Michaël; Liberal Olleta, Íñigo; Knall, Erik N.; Alam, M. Zahirul; Reshef, Orad; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Spontaneous emission, stimulated emission and absorption are the three fundamental radiative processes describing light-matter interactions. Here, we theoretically study the behavior of these fundamental processes inside an unbounded medium exhibiting a vanishingly small refractive index, i.e., a near-zero-index (NZI) host medium. We present a generalized framework to study these processes and find that the spatial dimension of the NZI medium has profound effects on the nature of the fundamental radiative processes. Our formalism highlights the role of the number of available optical modes as well as the ability of an emitter to couple to these modes as a function of the dimension and the class of NZI media. We demonstrate that the fundamental radiative processes are inhibited in 3D homogeneous lossless zero-index materials but may be strongly enhanced in a zero-index medium of reduced dimensionality. Our findings have implications in thermal, nonlinear, and quantum optics as well as in designing quantum metamaterials at optical or microwave frequencies.
  • PublicationOpen Access
    Momentum considerations inside near-zero index materials
    (Nature, 2022) Lobet, Michaël; Liberal Olleta, Íñigo; Vertchenko, Larissa; Lavrinenko, Andrei V.; Engheta, Nader; Mazur, Eric; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Near-zero index (NZI) materials, i.e., materials having a phase refractive index close to zero, are known to enhance or inhibit light-matter interactions. Most theoretical derivations of fundamental radiative processes rely on energetic considerations and detailed balance equations, but not on momentum considerations. Because momentum exchange should also be incorporated into theoretical models, we investigate momentum inside the three categories of NZI materials, i.e., inside epsilon-and-mu-near-zero (EMNZ), epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials. In the context of Abraham-Minkowski debate in dispersive materials, we show that Minkowski-canonical momentum of light is zero inside all categories of NZI materials while Abraham-kinetic momentum of light is zero in ENZ and MNZ materials but nonzero inside EMNZ materials. We theoretically demonstrate that momentum recoil, transfer momentum from the field to the atom and Doppler shift are inhibited in NZI materials. Fundamental radiative processes inhibition is also explained due to those momentum considerations inside three-dimensional NZI materials. Absence of diffraction pattern in slits experiments is seen as a consequence of zero Minkowski momentum. Lastly, consequence on Heisenberg inequality, microscopy applications and on the canonical momentum as generator of translations are discussed. Those findings are appealing for a better understanding of fundamental light-matter interactions at the nanoscale as well as for lasing applications.
  • PublicationOpen Access
    Near-zero-index media as electromagnetic ideal fluids
    (National Academy of Sciences, 2020) Liberal Olleta, Íñigo; Lobet, Michaël; Li, Yue; Engheta, Nader; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Near-zero-index (NZI) supercoupling, the transmission of electromagnetic waves inside a waveguide irrespective of its shape, is a counterintuitive wave effect that finds applications in optical interconnects and engineering light-matter interactions. However, there is a limited knowledge on the local properties of the electromagnetic power flow associated with supercoupling phenomena. Here, we theoretically demonstrate that the power flow in two-dimensional (2D) NZI media is fully analogous to that of an ideal fluid. This result opens an interesting connection between NZI electrodynamics and fluid dynamics. This connection is used to explain the robustness of supercoupling against any geometrical deformation, to enable the analysis of the electromagnetic power flow around complex geometries, and to examine the power flow when the medium is doped with dielectric particles. Finally, electromagnetic ideal fluids where the turbulence is intrinsically inhibited might offer interesting technological possibilities, e.g., in the design of optical forces and for optical systems operating under extreme mechanical conditions.
  • PublicationOpen Access
    Direct observation of ideal electromagnetic fluids
    (Springer Nature, 2022) Li, Hao; Zhou, Ziheng; Sun, Wangyu; Lobet, Michaël; Engheta, Nader; Liberal Olleta, Íñigo; Li, Yue; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC
    Near-zero-index (NZI) media have been theoretically identified as media where electromagnetic radiations behave like ideal electromagnetic fluids. Within NZI media, the electromagnetic power flow obeys equations similar to those of motion for the velocity field in an ideal fluid, so that optical turbulence is intrinsically inhibited. Here, we experimentally observe the electromagnetic power flow distribution of such an ideal electromagnetic fluid propagating within a cutoff waveguide by a semi-analytical reconstruction technique. This technique provides direct proof of the inhibition of electromagnetic vorticity at the NZI frequency, even in the presence of complex obstacles and topological changes in the waveguide. Phase uniformity and spatially-static field distributions, essential characteristics of NZI materials, are also observed. Measurement of the same structure outside the NZI frequency range reveals existence of vortices in the power flow, as expected for conventional optical systems. Therefore, our results provide an important step forward in the development of ideal electromagnetic fluids, and introduce a tool to explore the subwavelength behavior of NZI media including fully vectorial and phase information.
  • PublicationOpen Access
    Tutorial on the conservation of momentum in photonic time-varying media [Invited]
    (Optica, 2023) Ortega Gómez, Ángel; Lobet, Michaël; Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Time-varying media break temporal symmetries while preserving spatial symmetries intact. Thus, it represents an excellent conceptual framework to investigate the fundamental implications of Noether’s theorem for the electromagnetic field. At the same time, addressing momentum conservation in time-varying media sheds light on the Abraham-Minkowski debate, where two opposing forms of the electromagnetic field momentum are defended. Here, we present a tutorial review on the conservation of momentum in time-varying media. We demonstrate that the Minkowski momentum is a conserved quantity with three independent approaches of increasing complexity: (i) via the application of the boundary conditions for Maxwell equations at a temporal boundary, (ii) testing for constants of motion and deriving conservation laws, and (iii) applying temporal and spatial translations within the framework of the Lagrangian theory of the electromagnetic field. Each approach provides a different and complementary insight into the problem.
  • PublicationOpen Access
    New horizons in near-zero refractive index photonics and hyperbolic metamaterials
    (American Chemical Society, 2023) Lobet, Michaël; Kinsey, Nathaniel; Liberal Olleta, Íñigo; Caglayan, Humeyra; Huidobro, Paloma A.; Galiffi, Emanuele; Mejía-Salazar, Jorge Ricardo; Palermo, Giovanna; Jacob, Zubin; Maccaferri, Nicolò; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.