Liberal Olleta, Íñigo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Liberal Olleta
First Name
Íñigo
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Thermal emission in temporal metamaterials: fundamentals and novel phenomena(IEEE, 2023) Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCThermal emission is a fundamental issue that customarily has been fueled by the developments carried out in nanophotonics. Given such a parallelism and the latest advances bringing forward the realization of temporal metamaterials, in this work we combine both topics to sketch out an original theoretical formulation for rigorously addressing thermal emission in time-modulated media. Upon this ground, we find new physics and thermal phenomena, highlighting the emergence of non-local correlations, the possibility to overcome the black-body spectrum by temporal means, as well as the role of ENZ bodies as genuine platforms to enhance thermal emission, and the conception of innovative thermal emitters dual to spatial gratings.Publication Open Access Quantum vacuum amplification in time-varying media with arbitrary temporal profiles(American Physical Society, 2024-12-26) Ganfornina Andrades, Antonio; Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCIn this work we address quantum vacuum amplification effects in time-varying media with an arbitrary time-modulation profile. To this end, we propose a theoretical formalism based on the concept of conjugated harmonic oscillators, evaluating the impact on the transition time in temporal boundaries, shedding light into the practical requirements to observe quantum effects at them. In addition, we find nontrivial effects in pulsed modulations, where the swiftest and strongest modulation does not lead to the highest photon production. Thus, our results provide key insights for the design of temporal modulation sequences to enhance quantum phenomena.Publication Open Access Review on the scientific and technological breakthroughs in thermal emission engineering(American Chemical Society, 2024) Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.Publication Open Access Symmetries in time-varying media: on the conservation of spin angular momentum, helicity, and chirality(IEEE, 2024) Mohammadi Jajin, Mohsen; Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCOur results demonstrate that time-varying media exacerbate the differences between the symmetries and conserved quantities associated with dynamical properties associated with the circular polarization of light. In this manner, we provide further insights into the physical meaning of helicity and chirality, including their similarities and differences, as well as the fundamental role played by the symmetries of the electromagnetic Lagrangian in time-varying media.