Liberal Olleta, Íñigo

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Liberal Olleta

First Name

Íñigo

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 40
  • PublicationOpen Access
    Thermal emission in temporal metamaterials: fundamentals and novel phenomena
    (IEEE, 2023) Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Thermal emission is a fundamental issue that customarily has been fueled by the developments carried out in nanophotonics. Given such a parallelism and the latest advances bringing forward the realization of temporal metamaterials, in this work we combine both topics to sketch out an original theoretical formulation for rigorously addressing thermal emission in time-modulated media. Upon this ground, we find new physics and thermal phenomena, highlighting the emergence of non-local correlations, the possibility to overcome the black-body spectrum by temporal means, as well as the role of ENZ bodies as genuine platforms to enhance thermal emission, and the conception of innovative thermal emitters dual to spatial gratings.
  • PublicationOpen Access
    Exploring surface roughness in epsilon-near-zero materials
    (IEEE, 2024-10-08) Navajas Hernández, David; Pérez Escudero, José Manuel; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    The practical application of materials with epsilon-near-zero (ENZ) characteristics heavily depends on the quality of real-world ENZ materials, considering factors like material losses and surface roughness. These materials have drawn interest due to their strong nonlinear responses and unique behavior. In this study, an experimental examination of how surface roughness affects ENZ substrates is presented. We employed silicon carbide (SiC) substrates deliberately engineered to exhibit different levels of roughness, enabling us to analyze samples spanning from a few to hundreds of nanometers in size scales. Substrates with nanoscale roughness experience adverse effects due to longitudinal phonon coupling and strong ENZ fields, while at larger roughness scales, the ENZ band demonstrates to be more robust compared to dielectric and surface phonon polariton (SPhP) bands.
  • PublicationOpen Access
    Perfect narrowband absorbers using simple lithography-free structures
    (IEEE, 2024-10-08) Lezaun Capdevila, Carlos; Navajas Hernández, David; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Light absorption is a key phenomenon for a variety of technologies [1]: radiative cooling, photovoltaics, sensing, communication and camouflaging are just a few examples. These applications demand scalable and compact devices that modulate their absorption spectra, usually engineered using cavities and/or periodic structures acting as resonators. Weak light matter interaction limits the absorption within ultra-compact devices, although epsilon-near-zero (ENZ) materials allows to greatly increase such interaction [2]. The lack of design standardization presents a big gap for designing absorbers. We present a thorough analysis of an arbitrary material on top of a PEC (perfect electric reflector) and a material separated by a spacer from the PEC. We overview the absorption phenomena for different permittivity regions, thicknesses, angles of incidence and polarization. This work helps standardize the design of these absorber configuration.
  • PublicationOpen Access
    Quantum vacuum amplification in time-varying media with arbitrary temporal profiles
    (American Physical Society, 2024-12-26) Ganfornina Andrades, Antonio; Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    In this work we address quantum vacuum amplification effects in time-varying media with an arbitrary time-modulation profile. To this end, we propose a theoretical formalism based on the concept of conjugated harmonic oscillators, evaluating the impact on the transition time in temporal boundaries, shedding light into the practical requirements to observe quantum effects at them. In addition, we find nontrivial effects in pulsed modulations, where the swiftest and strongest modulation does not lead to the highest photon production. Thus, our results provide key insights for the design of temporal modulation sequences to enhance quantum phenomena.
  • PublicationOpen Access
    Review on the scientific and technological breakthroughs in thermal emission engineering
    (American Chemical Society, 2024) Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The emission of thermal radiation is a physical process of fundamental and technological interest. From different approaches, thermal radiation can be regarded as one of the basic mechanisms of heat transfer, as a fundamental quantum phenomenon of photon production, or as the propagation of electromagnetic waves. However, unlike light emanating from conventional photonic sources, such as lasers or antennas, thermal radiation is characterized for being broadband, omnidirectional, and unpolarized. Due to these features, ultimately tied to its inherently incoherent nature, taming thermal radiation constitutes a challenging issue. Latest advances in the field of nanophotonics have led to a whole set of artificial platforms, ranging from spatially structured materials and, much more recently, to time-modulated media, offering promising avenues for enhancing the control and manipulation of electromagnetic waves, from far- to near-field regimes. Given the ongoing parallelism between the fields of nanophotonics and thermal emission, these recent developments have been harnessed to deal with radiative thermal processes, thereby forming the current basis of thermal emission engineering. In this review, we survey some of the main breakthroughs carried out in this burgeoning research field, from fundamental aspects to theoretical limits, the emergence of effects and phenomena, practical applications, challenges, and future prospects.
  • PublicationOpen Access
    Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films
    (Optical Society of America, 2020) Pérez Escudero, José Manuel; Buldain, Iban; Beruete Díaz, Miguel; Goicoechea Fernández, Javier; Liberal Olleta, Íñigo; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The absorption of infrared radiation within ultra-thin metallic films is technologically relevant for different thermal engineering applications and optoelectronic devices, as well as for fundamental research on sub-nanometer and atomically-thin materials. However, the maximal attainable absorption within an ultra-thin metallic film is intrinsically limited by both its geometry and material properties. Here, we demonstrate that material-based high-impedance surfaces enhance the absorptivity of the films, potentially leading to perfect absorption for optimal resistive layers, and a fourfold enhancement for films at deep nanometer scales. Moreover, material-based high-impedance surfaces do not suffer from spatial dispersion and the geometrical restrictions of their metamaterial counterparts. We provide a proof-of-concept experimental demonstration by using titanium nanofilms on top of a silicon carbide substrate.
  • PublicationOpen Access
    Geometry-independent antenna based on Epsilon-near-zero medium
    (Springer Nature, 2022) Li, Hao; Zhou, Ziheng; He, Yijing; Sun, Wangyu; Li, Yue; Liberal Olleta, Íñigo; Engheta, Nader; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    It is well known that electromagnetic radiation from radiating elements (e.g., antennas, apertures, etc.) shows dependence on the element’s geometry shape in terms of operating frequencies. This basic principle is ubiquitous in the design of radiators in multiple applications spanning from microwave, to optics and plasmonics. The emergence of epsilon-near-zero media exceptionally allows for an infinite wavelength of electromagnetic waves, manifesting exotic spatially-static wave dynamics which is not dependent on geometry. In this work, we analyze theoretically and verify experimentally such geometry-independent features for radiation, thus presenting a novel class of radiating resonators, i.e., antennas, with an operating frequency irrelevant to the geometry shape while only determined by the host material’s dispersions. Despite being translated into different shapes and topologies, the designed epsilon-near-zero antenna resonates at a same frequency, while exhibiting very different far-field radiation patterns, with beams varying from wide to narrow, or even from single to multiple. Additionally, the photonic doping technique is employed to facilitate the high-efficiency radiation. The material-determined geometry-independent radiation may lead to numerous applications in flexible design and manufacturing for wireless communications, sensing, and wavefront engineering. © 2022, The Author(s).
  • PublicationOpen Access
    Suppressed-scattering spectral windows for radiative cooling applications
    (Optica, 2023) Pérez Escudero, José Manuel; Torres García, Alicia E.; Lezaun Capdevila, Carlos; Caggiano, Antonio; Peralta, Ignacio; Dolado, Jorge S.; Beruete Díaz, Miguel; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The scattering of light by resonant nanoparticles is a key process for enhancing the solar reflectance in daylight radiative cooling. Here, we investigate the impact of material dispersion on the scattering performance of popular nanoparticles for radiative cooling applications. We show that, due to material dispersion, nanoparticles with a qualitatively similar response at visible frequencies exhibit fundamentally different scattering properties at infrared frequencies. It is found that dispersive nanoparticles exhibit suppressed-scattering windows, allowing for selective thermal emission within a highly reflective sample. The existence of suppressed-scattering windows solely depends on material dispersion, and they appear pinned to the same wavelength even in random composite materials and periodic metasurfaces. Finally, we investigate calcium-silicate-hydrate (CSH), the main phase of concrete, as an example of a dispersive host, illustrating that the co-design of nanoparticles and host allows for tuning of the suppressed-scattering windows. Our results indicate that controlled nanoporosities would enable concrete with daylight passive radiative cooling capabilities.
  • PublicationOpen Access
    Incandescent temporal metamaterials
    (Nature Research, 2023) Vázquez Lozano, Juan Enrique; Liberal Olleta, Íñigo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Regarded as a promising alternative to spatially shaping matter, time-varying media can be seized to control and manipulate wave phenomena, including thermal radiation. Here, based upon the framework of macroscopic quantum electrodynamics, we elaborate a comprehensive quantum theoretical formulation that lies the basis for investigating thermal emission effects in time-modulated media. Our theory unveils unique physical features brought about by time-varying media: nontrivial correlations between fluctuating electromagnetic currents at different frequencies and positions, thermal radiation overcoming the black-body spectrum, and quantum vacuum amplification effects at finite temperature. We illustrate how these features lead to striking phenomena and innovative thermal emitters, specifically, showing that the time-modulation releases strong field fluctuations confined within epsilon-near-zero (ENZ) bodies, and that, in turn, it enables a narrowband (partially coherent) emission spanning the whole range of wavevectors, from near to far-field regimes.
  • PublicationOpen Access
    Fundamental radiative processes in near-zero-index media of various dimensionalities
    (American Chemical Society, 2020) Lobet, Michaël; Liberal Olleta, Íñigo; Knall, Erik N.; Alam, M. Zahirul; Reshef, Orad; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Spontaneous emission, stimulated emission and absorption are the three fundamental radiative processes describing light-matter interactions. Here, we theoretically study the behavior of these fundamental processes inside an unbounded medium exhibiting a vanishingly small refractive index, i.e., a near-zero-index (NZI) host medium. We present a generalized framework to study these processes and find that the spatial dimension of the NZI medium has profound effects on the nature of the fundamental radiative processes. Our formalism highlights the role of the number of available optical modes as well as the ability of an emitter to couple to these modes as a function of the dimension and the class of NZI media. We demonstrate that the fundamental radiative processes are inhibited in 3D homogeneous lossless zero-index materials but may be strongly enhanced in a zero-index medium of reduced dimensionality. Our findings have implications in thermal, nonlinear, and quantum optics as well as in designing quantum metamaterials at optical or microwave frequencies.