Mariscal Aguilar, Cristina

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Mariscal Aguilar

First Name

Cristina

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    The probability density function of the surface electromyogram and its dependence on contraction force in the vastus lateralis
    (BMC, 2024-10-26) Rodríguez Falces, Javier; Malanda Trigueros, Armando; Mariscal Aguilar, Cristina; Recalde Villamayor, Silvia; Navallas Irujo, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Introduction: the probability density function (PDF) of the surface electromyogram (sEMG) depends on contraction force. This dependence, however, has so far been investigated by having the subject generate force at a few fixed percentages of MVC. Here, we examined how the shape of the sEMG PDF changes with contraction force when this force was gradually increased from zero. Methods: voluntary surface EMG signals were recorded from the vastus lateralis of healthy subjects as force was increased in a continuous manner vs. in a step-wise fashion. The sEMG filling process was examined by measuring the EMG filling factor, computed from the non-central moments of the rectified sEMG signal. Results: in 84% of the subjects, as contraction force increased from 0 to 10% MVC, the sEMG PDF shape oscillated back and forth between the semi-degenerate and the Gaussian distribution; the PDF–force relation varied greatly among subjects for forces between 0 and ~ 10% MVC, but this variability was largely reduced for forces above 10% MVC; the pooled analysis showed that, as contraction force gradually increased, the sEMG PDF evolved rapidly from the semi-degenerate towards the Laplacian distribution from 0 to 5% MVC, and then more slowly from the Laplacian towards the Gaussian distribution for higher forces. Conclusions: the study demonstrated that the dependence of the sEMG PDF shape on contraction force can only be reliably assessed by gradually increasing force from zero, and not by performing a few constant-force contractions. The study also showed that the PDF–force relation differed greatly among individuals for contraction forces below 10% MVC, but this variability was largely reduced when force increased above 10% MVC.
  • PublicationOpen Access
    EMG filling analysis, a new method for the assessment of recruitment of motor units with needle EMG
    (Elsevier, 2025-02-20) Mariscal Aguilar, Cristina; Navallas Irujo, Javier; Malanda Trigueros, Armando; Recalde Villamayor, Silvia; Rodríguez Falces, Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    Objectives: The progression of recruitment of motor unit potentials (MUPs) during increasing voluntary contraction can provide important information about the motor units (MUs) innervating a muscle. Here, we described a method to quantitate the recruitment level of the intramuscular electromyographic (iEMG) signal during an increasing force level. Methods: Concentric needle EMG signals were recorded from the tibialis anterior of healthy subjects as force was gradually increased from 0 to maximum force. The iEMG filling process was analyzed by measuring the EMG filling factor (FF), calculated from the mean rectified iEMG and the root mean square iEMG. Results: (1) The iEMG activity at low contraction forces was “discrete” (FF<0.3) for all participants. (2) The iEMG activity at maximal effort was “full” (FF>0.5) for 83 % of the participants, whereas it was “incompletely-reduced” (0.3