Person:
Puertas Arbizu, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Puertas Arbizu

First Name

Ignacio

person.page.departamento

Ingeniería Mecánica, Energética y de Materiales

ORCID

0000-0002-3947-5236

person.page.upna

2368

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Mechanical properties analysis of an Al-Mg alloy connecting rod with submicrometric structure
    (MDPI, 2015) León Iriarte, Javier; Salcedo Pérez, Daniel; Murillo Crespo, Óscar; Luis Pérez, Carmelo; Fuertes Bonel, Juan Pablo; Puertas Arbizu, Ignacio; Luri Irigoyen, Rodrigo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Over these last few years, there has been a growing interest in developing mechanical components from submicrometric materials due to the significant improvement that these materials present compared to their original state. This present research work deals with the study of the mechanical properties of a connecting rod isothermally forged from different starting materials. These materials are as follows: annealed aluminum alloy (AA) 5754, the same alloy previously deformed through equal channel angular pressing (ECAP) and a third case where the previously ECAP-processed material is subjected to a recovery heat treatment. A comparison is made between finite volume (FV) simulations and experimental tests with respect to hardness, plastic strain and forging force. Furthermore, the improvement in the mechanical properties of the connecting rod forged from predeformed material is evaluated in comparison to the connecting rod forged with annealed material. The microstructure of both cases is also compared at the end of the manufacturing process.
  • PublicationOpen Access
    Design and optimization of the dies for the isothermal forging of a cam
    (Elsevier, 2015) Salcedo Pérez, Daniel; Luis Pérez, Carmelo; Luri Irigoyen, Rodrigo; León Iriarte, Javier; Puertas Arbizu, Ignacio; Fuertes Bonel, Juan Pablo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In the present study, the design of the dies required for the isothermal forging of a cam is analysed by finite volume method. Specifically, cams are of great importance in automotive industry, where a lower weight and an improvement in the lubrication or in the materials to be in contact lead to a significant reduction in the fuel cost. The flow stress curves of one Al-Mg alloy were firstly determined by using compression tests. Once these flow stress curves were obtained, FV simulation was employed. In the forging process, the optimum die configuration has been selected. To this end, several aspects have been taken into account such as the force required for the forging, the correct die filling, the introduced plastic strain and the damage imparted to the billet.
  • PublicationOpen Access
    Design and mechanical properties analysis of AA5083 ultrafine grained cams
    (MDPI, 2017) Salcedo Pérez, Daniel; Luis Pérez, Carmelo; Luri Irigoyen, Rodrigo; Puertas Arbizu, Ignacio; León Iriarte, Javier; Fuertes Bonel, Juan Pablo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This present research work deals with the development of ultrafine grained cams obtained from previously ECAP (Equal Channel Angular Pressing)-processed material and manufactured by isothermal forging. The design and the manufacturing of the dies required for the isothermal forging of the cams are shown. Optimization techniques based on the combination of design of experiments, finite element and finite volume simulations are employed to develop the dies. A comparison is made between the mechanical properties obtained with the cams manufactured from material with no previous deformation and with those from previously SPD (Severe Plastic Deformation)-processed material. In addition, a comparative study between the experimental results and those obtained from the simulations is carried out. It has been demonstrated that it is possible to obtain ultrafine grained cams with an increase of 10.3% in the microhardness mean value as compared to that obtained from material with no previous deformation.
  • PublicationOpen Access
    Experimental and FEM analysis of wear behaviour in AA5083 ultrafine-grained cams
    (MDPI, 2020) Luis Pérez, Carmelo; Luri Irigoyen, Rodrigo; Fuertes Bonel, Juan Pablo; León Iriarte, Javier; Salcedo Pérez, Daniel; Puertas Arbizu, Ignacio; Ingeniería; Ingeniaritza
    Severe plastic deformation (SPD) processes have attracted a great deal of both scientific and technological interest over the last few years as a consequence of the improvements that are possible to obtain in the microstructure and mechanical properties of the materials manufactured through the use of these kind of processes. However, the practical applications of such materials to obtain mechanical components are significantly fewer. As a direct consequence, the same thing has been observed in the development of studies that show the in-service behaviour of the mechanical components developed in this way. Since one of the industrial objectives of these SPD processes is to obtain functional parts, it is necessary to carry out studies to fill this gap. Therefore, in this study, an analysis of the wear that cams undergo when manufactured from an AA5083 aluminium-magnesium alloy is carried out. The cams were isothermally-forged from materials with and without previous SPD processing by equal channel angular pressing (ECAP). Subsequently, the wear behaviour of these cams was analysed by using specific equipment, which may have been considered to have a block-on-ring configuration, developed for testing in-service wear behaviour of mechanical parts. From this comparative wear study with cams, it is shown that previously-processed materials by ECAP have a better wear performance. Moreover, finite element modelling (FEM) simulations were also included to predict wear in the cams processed in this way. A good agreement between FEM and experimental results was obtained. It is this aspect of performing the wear tests on functional and real mechanical components, and not on laboratory samples, which makes this present research work novel.
  • PublicationOpen Access
    Comparative study of the damage attained with different specimens by FEM
    (Elsevier, 2015) Fuertes Bonel, Juan Pablo; Luri Irigoyen, Rodrigo; Luis Pérez, Carmelo; Salcedo Pérez, Daniel; León Iriarte, Javier; Puertas Arbizu, Ignacio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This present research work deals with the analysis of the design of different specimen geometries so that by finite volume simulations, the appearance of cracks may be predicted in the case of forging processes. To this end, each of the geometries selected are studied by means of compression tests between plane shape dies in the same conditions (T = 25 ºC). On the one hand, a value for the critical damage value is obtained by applying the Cockroft-Latham’s criterion and on the other hand, a damage distribution along all the specimen volume with the aim of defining a specimen which shows the most likely place for the crack to appear. This crack location may be also determined through visual inspection with the aim of being able to evaluate this experimentally in the near future.
  • PublicationOpen Access
    Design, simulation and manufacturing of a connecting rod from ultra-fine grained material and isothermal forging
    (Elsevier, 2016) Fuertes Bonel, Juan Pablo; Luis Pérez, Carmelo; Luri Irigoyen, Rodrigo; Salcedo Pérez, Daniel; León Iriarte, Javier; Puertas Arbizu, Ignacio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In this research work, a study on the mechanical properties of isothermal forging for connecting rods is made from previously ECAP (Equal Channel Angular Pressing)-processed AA1050 and AA5083 aluminium alloys. This severe plastic deformation (SPD) process is used in order to achieve a starting material with a submicrometric structure, thus improving the mechanical properties of the part. In this study, the design and the experimentation process is shown, where this involves the design stage by finite element simulations, the experimental tests and the use of metallographic techniques for the required properties to be analysed. Itis observed thatthere is an improvementin the mechanical properties when the starting material is ECAP-processed before carrying out the isothermal forging. This improvement consists in an increase of 20% in the hardness of the final connecting rod which also possesses a microstructure grain size of 500 nm. To come to these conclusions,the results obtained with the connecting rods manufactured by isothermal forging from previously ECAP-processed material are compared with those conventionally manufactured. Therefore,the feasibility and the advantages ofthe industrialmanufacturing ofmechanical components by isothermal forging from ECAP-processed material are demonstrated here as mechanical properties are achieved, as well as a better flow of the material and at a lower forging temperature. In the existing bibliography, there are no research works dealing with the manufacturing of connecting rods from ultra-fine grained material and that is the reason why this present study is considered to be of scientific and technological interest, and therefore, it may be considered to be at the frontline of current knowledge.