Atienza Martínez, María
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Atienza Martínez
First Name
María
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
1 results
Search Results
Now showing 1 - 1 of 1
Publication Open Access Comparative study of supported Ni and Co catalysts prepared using the All-in-One method in the hydrogenation of CO2: effects of using (Poly)Vinyl Alcohol (PVA) as an additive(MDPI, 2024) Navarrete Rodríguez, Luisa Fernanda; Atienza Martínez, María; Reyero Zaragoza, Inés; Urroz Unzueta, José Carlos; Amorrortu, Oihana; Sanz Iturralde, Oihane; Montes, Mario; Garcés, Siby I.; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; IngeniaritzaTwo series of Ni and Co catalysts supported onto La-Al2O3 were prepared and the CO2 hydrogenation reactions investigated. The catalytic performance was evaluated in terms of the evolution with the reaction temperature of the CO2 conversion and product (CH4 and CO) yields, as well as specific activities (TOF) and apparent activation energies. CH4 was the favored product over both metals while the TOF for CH4 formation was about three times higher for Ni than Co at 240–265 °C. Metallic particle size effects were found, with the TOF for CH4 formation decreasing over both Ni and Co as the mean metallic size decreased. In contrast, the TOF for CO formation tended to increase at a decreasing particle size for the catalysts with the smallest Ni particle sizes. The apparent activation energies for Ni and Co were very similar and significantly decreased to values of 73–79 kJ/mol when the metallic dispersion increased. The catalysts were prepared using the all-in-one method, resulting in (poly)vinyl alcohol (PVA) being a key additive that allowed us to enhance the dispersion of Ni and Co to give very effective catalysts. This comparative study joins the few existing ones in the literature in which catalysts based on these metals operated under strictly the same reaction conditions.