Peralta de Andrés, Francisco Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Peralta de Andrés
First Name
Francisco Javier
person.page.departamento
Ciencias
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Changes in long-term light properties of a mixed conifer–broadleaf forest in Southwestern Europe(MDPI, 2021) Ruiz de la Cuesta Vela, Ignacio; Blanco Vaca, Juan Antonio; Imbert Rodríguez, Bosco; Peralta de Andrés, Francisco Javier; Rodríguez Pérez, Javier; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaNatural and anthropogenic factors affect forest structure worldwide, primarily affecting forest canopy and its light properties. However, not only stand-replacing events modify canopy structure, but disturbances of lower intensity can also have important ecological implications. To study such effects, we analyzed long-term changes in light properties of a conifer–broadleaf mixed forest in the Southwestern Pyrenees, placed in the fringe between the Mediterranean and Eurosi- berian biogeographical regions. At this site, a thinning trial with different intensities (0%, 20%, and 30–40% basal area removed) took place in 1999 and 2009, windstorms affected some plots in 2009 and droughts were recurrent during the sampling period (2003, 2005, 2011). We monitored light properties during 14 years (2005–2019) with hemispherical photographs. We applied partial autocorrelation functions to determine if changes between years could be attributed to internal canopy changes or to external disturbances. In addition, we mapped the broadleaf canopy in 2003, 2008, and 2016 to calculate broadleaf canopy cover and richness at the sampling points with different buffer areas of in- creasing surface. We applied generalized linear mixed models to evaluate the effects of light variables on canopy richness and cover. We found that light variables had the most important changes during the period 2008 to 2010, reacting to the changes caused that year by the combined effects of wind and forest management. In addition, we found that an area of 4.0 m radius around the sampling points was the best to explain the relationship between light properties and species richness, whereas a radius of 1.0 m was enough to estimate the relationship between light and canopy cover. In addition, light-related variables such as diffuse light and leaf area index were related to species richness, whereas structural variables such as canopy openness were related to canopy cover. In summary, our study demonstrates that non stand-replacing disturbances such as windstorms, thinning, or droughts can have an important role in modifying structural and light-related canopy properties, which in turn may influence natural processes of stand development and ecological succession.Publication Open Access Environment and density-dependency explain the fine-scale aggregation of tree recruits before and after thinning in a mixed forest of Southern Europe(PeerJ, 2022) Rodríguez Pérez, Javier; Peralta de Andrés, Francisco Javier; Imbert Rodríguez, Bosco; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; CienciasThinning in forest management primarily reduces the density of trees and alters the patchiness and spatial complexity of environmental factors and individual interactions between plant recruits. At fine spatial scales, little is known about the relative weight of ecological processes affecting tree regeneration before and after thinning events. Here we studied the density and aggregation of tree recruits in fully-mapped plots located in mixed forests in Northern Iberian Peninsula (Southern Europe) for over four years, which comprises one year before and three years after a thinning event. We applied spatial point-pattern analyses to examine (a) the aggregation of recruits, and their association with trees and (b) the relative effect of both environmental (i.e., the patchiness of the local environment) and density-dependent factors (i.e., the aggregation of trees and/or recruits) to predict the density, aggregation, and survival of recruits. We found, in thinning plots, that recruits were less dense, their aggregation pattern was more heterogeneous, were distributed randomly in respect of trees and their survival was almost unaffected by the tree proximity. By contrast, recruits in control plots were denser, were only aggregated at distances lower than 1.0 m, were closer to trees, and such closer distance to trees affected negatively in their survival. Independently of the treatment, the aggregation of recruits was chiefly determined by the density-dependent factors at less than 1.0 m and environmental factors at distances beyond that proximity. Overall, our results suggest that thinning affected the aggregation of recruits at two spatial scales: (a) by favoring the tree-recruit and recruit-recruit facilitation at less than 1.0 m and (b) by modifying spatial heterogeneity of the environment at distances beyond that proximity.