Pacheco-Peña, Víctor
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Pacheco-Peña
First Name
Víctor
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes(MDPI, 2018) Legaria Lerga, Santiago; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISCIn this paper, we design and numerically demonstrate an ultra-thin super-oscillatory metalens with a resolution below the diffraction limit. The zones of the lens are implemented using metasurface concepts with hexagonal unit cells. This way, the transparency and, hence, efficiency is optimized, compared to the conventional transparent–opaque zoning approach that introduces, inevitably, a high reflection in the opaque regions. Furthermore, a novel two-step optimization technique, based on evolutionary algorithms, is developed to reduce the side lobes and boost the intensity at the focus. After the design process, we demonstrate that the metalens is able to generate a focal spot of 0.46λ0 (1.4 times below the resolution limit) at the design focal length of 10λ0 with reduced side lobes (the side lobe level being approximately −11 dB). The metalens is optimized at 0.327 THz, and has been validated with numerical simulations.Publication Open Access Highly efficient focusing of terahertz waves with an ultrathin superoscillatory metalens: experimental demonstration(Wiley, 2021-05-06) Legaria Lerga, Santiago; Teniente Vallinas, Jorge; Kuznetsov, Sergei A.; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISCThe performance of an ultrathin (thickness < 0.04λ 0) metasurface superoscillatory lens (metaSOL) is experimentally demonstrated in the terahertz (THz) range. The metaSOL is designed using two different hexagonal unit cells to improve the efficiency and properties of the conventional transparent–opaque zoning approach. The focusing metastructure produces, at a frequency f exp = 295 GHz, a sharp focal spot 8.9λ exp away from its output surface with a transversal resolution of 0.52λ exp (≈25% below the resolution limit imposed by diffraction), a power enhancement of 18.2 dB, and very low side lobe level (−13 dB). Resolution below the diffraction limit is demonstrated in a broad fractional operation bandwidth of 18%. The focusing capabilities of the proposed metaSOL show its potential use in a range of applications such as THz imaging, microscopy, and communications.