Pacheco-Peña, Víctor

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pacheco-Peña

First Name

Víctor

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 28
  • PublicationOpen Access
    Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes
    (MDPI, 2018) Legaria Lerga, Santiago; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    In this paper, we design and numerically demonstrate an ultra-thin super-oscillatory metalens with a resolution below the diffraction limit. The zones of the lens are implemented using metasurface concepts with hexagonal unit cells. This way, the transparency and, hence, efficiency is optimized, compared to the conventional transparent–opaque zoning approach that introduces, inevitably, a high reflection in the opaque regions. Furthermore, a novel two-step optimization technique, based on evolutionary algorithms, is developed to reduce the side lobes and boost the intensity at the focus. After the design process, we demonstrate that the metalens is able to generate a focal spot of 0.46λ0 (1.4 times below the resolution limit) at the design focal length of 10λ0 with reduced side lobes (the side lobe level being approximately −11 dB). The metalens is optimized at 0.327 THz, and has been validated with numerical simulations.
  • PublicationOpen Access
    Metamaterials and plasmonics applied to devices based on periodic structures at high frequencies: microwaves, terahertz and optical range
    (2016) Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Esta tesis muestra el trabajo de investigación desarollado bajo el programa de doctorado “tecnología de las comunicaciones” de la Universidad Pública de Navarra (UPNA), para el grado de Doctor (PhD) en Ingenieria de Telecomunicaciones. La guía, supervisión y dirección de esta tesis doctoral ha sido desarrollada por Dr. Miguel Beruete Díaz de la UPNA. Durante el programa de PhD, dos estancias internacionales han sido completadas por este estudiante doctoral en las siguientes instituciones: Universidad de Pennsylvania bajo la supervisión de Prof. Nader Engheta (3 meses) y Imperial College London bajo la guía de Dr. Miguel Navarro-Cía (2 meses). Los temas tratados en esta tesis son desarrollados en milimétricas, terahercios y frecuencias ópticas. Se usan principalmente metamateriales y estructuras periódicas en el diseño de diferentes dispositivos como lentes, direccionadores de haz, guías de onda, etc.
  • PublicationOpen Access
    Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle
    (IEEE, 2015) Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The performance of an epsilon-near zero (ENZ) plano-concave lens is experimentally demonstrated and verified at the D-band of the millimeter-waves. The lens is comprised of an array of narrow metallic waveguides near cut-off frequency, which effectively behaves as an epsilon-near-zero medium at 144 GHz. A good matching with free space is achieved by exploiting the phenomenon of energy squeezing and a clear focus with a transmission enhancement of 15.9 dB is measured. The lens shows good radiation properties with a directivity of 17.6 dBi and low cross-polar components of -34 dB. All results are supported by numerical simulations.
  • PublicationOpen Access
    Exploiting the dispersion of the double-negative-index fishnet metamaterial to create a broadband low-profile metallic lens
    (Optical Society of America, 2015) Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Navarro Cía, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Metamaterial lenses with close values of permittivity and permeability usually display low reflection losses at the expense of narrow single frequency operation. Here, a broadband low-profile lens is designed by exploiting the dispersion of a fishnet metamaterial together with the zoning technique. The lens operates in a broadband regime from 54 GHz to 58 GHz, representing a fractional bandwidth ~7%, and outperforms Silicon lenses between 54 and 55.5 GHz. This broadband operation is demonstrated by a systematic analysis comprising Huygens-Fresnel analytical method, full-wave numerical simulations and experimental measurements at millimeter waves. For demonstrative purposes, a detailed study of the lens operation at two frequencies is done for the most important lens parameters (focal length, depth of focus, resolution, radiation diagram). Experimental results demonstrate diffraction-limited ~0.5λ transverse resolution, in agreement with analytical and numerical calculations. In a lens antenna configuration, a directivity as high as 16.6 dBi is achieved. The different focal lengths implemented into a single lens could be potentially used for realizing the front end of a non-mechanical zoom millimeter-wave imaging system.
  • PublicationOpen Access
    Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies
    (American Physical Society, 2017) Pacheco-Peña, Víctor; Engheta, Nader; Kuznetsov, Sergei A.; Gentselev, Alexandr; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    The terahertz band has been historically hindered by the lack of efficient generators and detectors, but a series of recent breakthroughs have helped to effectively close the “terahertz gap.” A rapid development of terahertz technology has been possible thanks to the translation of revolutionary concepts from other regions of the electromagnetic spectrum. Among them, metamaterials stand out for their unprecedented ability to control wave propagation and manipulate electromagnetic response of matter. They have become a workhorse in the development of terahertz devices such as lenses, polarizers, etc., with fascinating features. In particular, epsilon-near-zero (ENZ) metamaterials have attracted much attention in the past several years due to their unusual properties such as squeezing, tunneling, and supercoupling where a wave traveling inside an electrically small channel filled with an ENZ medium can be tunneled through it, reducing reflections and coupling most of its energy. Here, we design and experimentally demonstrate an ENZ graded-index (GRIN) metamaterial lens operating at terahertz with a power enhancement of 16.2 dB, using an array of narrow hollow rectangular waveguides working near their cutoff frequencies. This is a demonstration of an ENZ GRIN device at terahertz and can open the path towards other realizations of similar devices enabling full quasioptical processing of terahertz signals.
  • PublicationOpen Access
    Zoned fishnet lens antenna with reference phase for side lobe reduction
    (IEEE, 2015) Pacheco-Peña, Víctor; Navarro Cía, Miguel; Orazbayev, Bakhtiyar; Minin, Igor V.; Minin, Oleg V.; Beruete Díaz, Miguel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Reduction of first side lobe level and nulls in artificial fishnet metalenses is accomplished here by applying the reference phase concept along with the zoning technique. Higher focusing efficiency is achieved for a specific reference phase when comparing numerically and experimentally four different designs. For such best design, an improvement of the first side lobe level (2.4 dB), first null (13 dB) and gain (1.77dB) is achieved experimentally compared to the design without reference phase.
  • PublicationOpen Access
    Extraordinary THz transmission with a small beam spot: the leaky wave mechanism
    (Wiley, 2018) Navarro Cía, Miguel; Pacheco-Peña, Víctor; Kuznetsov, Sergei A.; Beruete Díaz, Miguel; Institute of Smart Cities - ISC
    The discovery of extraordinary optical transmission (EOT) through patterned metallic foils in the late 1990s was decisive for the development of plasmonics and cleared the path to employ small apertures for a variety of interesting applications all along the electromagnetic spectrum. However, a typical drawback often found in practical EOT structures is the large size needed to obtain high transmittance peaks. Consequently, practical EOT arrays are usually illuminated using an expanded (mimicking a plane wave) beam. Here, it is shown with numerical and experimental results in the THz range that high transmittance peaks can be obtained even with a reduced illumination spot exciting a small number of holes, provided that the structure has a sufficient number of lateral holes out of the illumination spot. These results shed more light on the prominent role of leaky waves in the underlying physics of EOT and have a direct impact on potential applications.
  • PublicationOpen Access
    Steering surface plasmons with a graded index dielectric medium
    (IOP Publishing, 2018) Beruete Díaz, Miguel; Pacheco-Peña, Víctor; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    The arbitrary control of surface plasmon (SP) propagation has become an intense research topic for several decades. This is due to the fact that they can be used in a variety of fields such as optical trapping, nanoantennas and medical applications. In this communication, the graded index technique is applied in the design of several steerers able to tailor the direction of propagation of the incident SPs by simply changing the height of a dielectric block on top of a semi?infinite metal slab. The design procedure is shown and the structures are numerically evaluated demonstrating a good agreement with the analytical calculations, with the SPs deflected at the design angles (θ ranging from 10° to 60°) with a wide bandwidth steering of 60 nm around the design value (633 nm)
  • PublicationOpen Access
    On the performance of the zoned fishnet metamaterial lens with positive and negative reference phase
    (IEEE, 2016) Pacheco-Peña, Víctor; Minin, Igor V.; Minin, Oleg V.; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this letter, several converging fishnet metalenses are designed using both the zoning and reference phase techniques. They are engineered with a focal length of 1.5λ0 at the design frequency of 55 GHz (λ0 = 5.45 mm) at which the fishnet metamaterial has an effective refractive index of nlens = ∼0.68. Three metalenses are analyzed—with positive, negative, and without reference phase—in order to compare their performance. The focal properties are evaluated both numerically and experimentally, demonstrating a good agreement between them. The best performance is achieved for the zoned metalens with positive reference phase,with an experimental power enhancement at the focal length of 6.2 dB, better axial resolution (0.65λ0 ), and reduced lateral lobes compared to other designs
  • PublicationOpen Access
    Terajets produced by dielectric cuboids
    (AIP Publishing, 2014) Pacheco-Peña, Víctor; Beruete Díaz, Miguel; Minin, Igor V.; Minin, Oleg V.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The capability of generating terajets using three-dimensional (3D) dielectric cuboids working at terahertz (THZ) frequencies (as analogues of nanojets in the infrared band) is introduced and studied numerically. The focusing performance of the terajets is evaluated in terms of the transversal full width at half maximum (FWHM) along x- and y-directions using different refractive indices for a 3D dielectric cuboid with a fixed geometry, obtaining a quasi-symmetric terajet with a subwavelength resolution of 0.46 wavelengths when the refractive index is n=1.41. Moreover, the backscattering enhancement produced when metal particles are introduced in the terajet region is demonstrated for a 3D dielectric cuboid and compared with its two-dimensional (2D) counterpart. The results of the jet generated for the 3D case are experimentally validated at sub-THZ waves, demonstrating the ability to produce terajets using 3D cuboids.