Gil Puig, Carmen
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Gil Puig
First Name
Carmen
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs(BioMed Central, 2020) Gil Puig, Carmen; Latasa Osta, Cristina; García Ona, Enrique; Lázaro, Isidro; Labairu, Javier; Echeverz Sarasúa, Maite; Burgui Erice, Saioa; García Martínez, Begoña; Lasa Uzcudun, Íñigo; Solano Goñi, Cristina; Ciencias de la Salud; Osasun Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, IIM 13329.RI1Salmonellosis is the second most common food-borne zoonosis in the European Union, with pigs being a major reservoir of this pathogen. Salmonella control in pig production requires multiple measures amongst which vaccination may be used to reduce subclinical carriage and shedding of prevalent serovars, such as Salmonella enterica serovar Typhimurium. Live attenuated vaccine strains offer advantages in terms of enhancing cell mediated immunity and allowing inoculation by the oral route. However, main failures of these vaccines are the limited cross-protection achieved against heterologous serovars and interference with serological monitoring for infection. We have recently shown that an attenuated S. Enteritidis strain (ΔXIII) is protective against S. Typhimurium in a murine infection model. ΔXIII strain harbours 13 chromosomal deletions that make it unable to produce the sigma factor RpoS and synthesize cyclic-di-GMP (c-di-GMP). In this study, our objectives were to test the protective effects of ΔXIII strain in swine and to investigate if the use of ΔXIII permits the discrimination of vaccinated from infected pigs. Results show that oral vaccination of pre-weaned piglets with ΔXIII cross-protected against a challenge with S. Typhimurium by reducing faecal shedding and ileocaecal lymph nodes colonization, both at the time of weaning and slaughter. Vaccinated pigs showed neither faecal shedding nor tissue persistence of the vaccine strain at weaning, ensuring the absence of ΔXIII strain by the time of slaughter. Moreover, lack of the SEN4316 protein in ΔXIII strain allowed the development of a serological test that enabled the differentiation of infected from vaccinated animals (DIVA).Publication Open Access Inhibiting the two‑component system GraXRS with verteporfin to combat Staphylococcus aureus infections(Nature Research, 2020) Prieto Mariscal, Juana María; Rapún Araiz, Beatriz; Gil Puig, Carmen; Penadés, José R.; Lasa Uzcudun, Íñigo; Latasa Osta, Cristina; Ciencias de la Salud; Osasun ZientziakInfections caused by Staphylococcus aureus pose a serious and sometimes fatal health issue. With the aim of exploring a novel therapeutic approach, we chose GraXRS, a Two-Component System (TCS) that determines bacterial resilience against host innate immune barriers, as an alternative target to disarm S. aureus. Following a drug repurposing methodology, and taking advantage of a singular staphylococcal strain that lacks the whole TCS machinery but the target one, we screened 1.280 offpatent FDA-approved drug for GraXRS inhibition. Reinforcing the connection between this signaling pathway and redox sensing, we found that antioxidant and redox-active molecules were capable of reducing the expression of the GraXRS regulon. Among all the compounds, verteporfin (VER) was really efficient in enhancing PMN-mediated bacterial killing, while topical administration of such drug in a murine model of surgical wound infection significantly reduced the bacterial load. Experiments relying on the chemical mimicry existing between VER and heme group suggest that redox active residue C227 of GraS participates in the inhibition exerted by this FDA-approved drug. Based on these results, we propose VER as a promising candidate for sensitizing S. aureus that could be helpful to combat persistent or antibiotic-resistant infections.