Ramírez Nasto, Lucía

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Ramírez Nasto

First Name

Lucía

person.page.departamento

Agronomía, Biotecnología y Alimentación

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems
    (Blackwell Scientific Publications Ltd, 2023) Auer, Lucas; Buée, Marc; Fauchery, Laure; Lombard, Vincent; Barry, Kerrie; Clum, Alicia; Copeland, Alex; Daum, Chris; LaButti, Kurt; Singan, Vasanth; Yoshinaga, Yuko; Martineau, Christine; Castillo Martínez, Federico; Alfaro Sánchez, Manuel; Imbert Rodríguez, Bosco; Ramírez Nasto, Lucía; Castanera Andrés, Raúl; Pisabarro de Lucas, Gerardo; Finlay, Roger; Lindahl, Björn D.; Olson, Ake; Séguin, Armand; Kohler, Annegret; Henrissat, Bernard; Grigoriev, Igor V.; Martin, Francis; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.
  • PublicationOpen Access
    Transcriptome metabolic characterization of tuber borchii SP1-A new spanish strain for in vitro studies of the bianchetto truffle
    (MDPI, 2023) Chuina Tomazeli, Emilia; Alfaro Sánchez, Manuel; Zambonelli, Alessandra; Garde Sagardoy, Edurne; Pérez Garrido, María Gumersinda; Jiménez Miguel, Idoia; Ramírez Nasto, Lucía; Salman, Hesham; Pisabarro de Lucas, Gerardo; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds.
  • PublicationOpen Access
    Genomic analysis enlightens agaricales lifestyle evolution and increasing peroxidase diversity
    (Oxford University Press, 2021) Ruiz Dueñas, Francisco J.; Barrasa, José M.; Sánchez-García, Marisol; Camarero, Susana; Miyauchi, Shingo; Linde, Dolores; Babiker, Rashid; Drula, Elodie; Ayuso-Fernández, Iván; Pacheco, Remedios; Padilla, Guillermo; Ferreira, Patricia; Barriuso, Jorge; Kellner, Harald; Castanera Andrés, Raúl; Alfaro Sánchez, Manuel; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Riley, Robert; Kuo, Alan; Andreopoulos, William; LaButti, Kurt; Pangilinan, Jasmyn; Tritt, Andrew; Lipzen, Anna; He, Guifen; Yan, Mi; Vivian, Ng; Grigoriev, Igor V.; Cullen, Daniel; Martin, Francis; Rosso, Marie-Noëlle; Henrissat, Bernard; Hibbett, David; Martínez, Ángel T.; Institute for Multidisciplinary Research in Applied Biology - IMAB
    As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestralsequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.
  • PublicationOpen Access
    Effect of nutritional factors and copper on the regulation of laccase enzyme production in Pleurotus ostreatus
    (MDPI, 2022) Durán Sequeda, Dinary Eloísa; Suspes, Daniela; Maestre, Estibenson; Alfaro Sánchez, Manuel; Pérez Garrido, María Gumersinda; Ramírez Nasto, Lucía; Pisabarro de Lucas, Gerardo; Sierra Ramírez, Rocío; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This research aimed to establish the relationship between carbon–nitrogen nutritional factors and copper sulfate on laccase activity (LA) by Pleurotus ostreatus. Culture media composition was tested to choose the nitrogen source. Yeast extract (YE) was selected as a better nitrogen source than ammonium sulfate. Then, the effect of glucose and YE concentrations on biomass production and LA as response variables was evaluated using central composite experimental designs with and without copper. The results showed that the best culture medium composition was glucose 45 gL−1 and YE 15 gL−1, simultaneously optimizing these two response variables. The fungal transcriptome was obtained in this medium with or without copper, and the differentially expressed genes were found. The main upregulated transcripts included three laccase genes (lacc2, lacc6, and lacc10) regulated by copper, whereas the principal downregulated transcripts included a copper transporter (ctr1) and a regulator of nitrogen metabolism (nmr1). These results suggest that Ctr1, which facilitates the entry of copper into the cell, is regulated by nutrient-sufficiency conditions. Once inside, copper induces transcription of laccase genes. This finding could explain why a 10–20-fold increase in LA occurs with copper compared to cultures without copper when using the optimal concentration of YE as nitrogen sources.