Pérez Artieda, Miren Gurutze

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pérez Artieda

First Name

Miren Gurutze

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Development and experimental validation of a thermoelectric test bench for laboratory lessons
    (OmniaScience, 2013) Rodríguez García, Antonio; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Aranguren Garacochea, Patricia; Pérez Artieda, Miren Gurutze; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The refrigeration process reduces the temperature of a space or a given volume while the power generation process employs a source of thermal energy to generate electrical power. Because of the importance of these two processes, training of engineers in this area is of great interest. In engineering courses it is normally studied the vapor compression and absorption refrigeration, and power generation systems such as gas turbine and steam turbine. Another type of cooling and generation less studied within the engineering curriculum, having a great interest, it is cooling and thermal generation based on Peltier and Seebeck effects. The theoretical concepts are useful, but students have difculties understanding the physical meaning of their possible applications. Providing students with tools to test and apply the theory in real applications, will lead to a better understanding of the subject. Engineers must have strong theoretical, computational and also experimental skills. A prototype test bench has been built and experimentally validated to perform practical lessons of thermoelectric generation and refrigeration. Using this prototype students learn the most effective way of cooling systems and thermal power generation as well as basic concepts associated with thermoelectricity. It has been proven that students learn the process of data acquisition, and the technology used in thermoelectric devices. These practical lessons are implemented for a 60 people group of students in the development of subject of Thermodynamic including in the Degree in Engineering in Industrial Technologies of Public University of Navarra.
  • PublicationOpen Access
    Influence of temperature and aging on the thermal contact resistance in thermoelectric devices
    (Springer, 2020) Rodríguez García, Antonio; Pérez Artieda, Miren Gurutze; Beisti Antoñanzas, Irene; Astrain Ulibarrena, David; Martínez Echeverri, Álvaro; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    During thermal design in the first phases development, thermoelectric systems, such as thermoelectric generators, the most important parameter affecting the performance is thermal resistance of the components. This paper focusses on the thermal contact resistance (TCR), analyzing the influence of aging and temperature on different thermal interface materials (TIMs), i.e., thermal paste, graphite and indium. In previous papers, TCR has been studied depending on parameters such as surface roughness, bonding pressure, thermal conductivity and surface hardness. However, in thermoelectric applications, a relevant aspect to consider when choosing a TIM is aging due to thermal stress. The exposure of this type of material to high temperatures for long periods of time leads to deterioration, which causes an increase in the TCR impairing the conduction of the heat flow. Therefore, there is a need to study the behavior of TIMs exposed to temperatures typical in thermoelectric generators to make a correct selection of the TIM. It has been observed that exposure to temperatures of around 180°C induces a significant increase in the thermal impedance of the three TIMs under study, although this effect is much more relevant for thermal paste. The contact, comprising steel, thermal paste and ceramic, presents a 300% increase in the thermal impedance after 70 days of aging, whereas that exceeds 185% for the contact of aluminum, thermal paste and ceramic. In the tests with exposure temperature of 60°C, there is no observed decrease in the thermal impedance.