Pérez Artieda, Miren Gurutze

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pérez Artieda

First Name

Miren Gurutze

person.page.departamento

Ingeniería

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Study of the degradation of heat exchanger materials in the acidic environment of Teide National Park
    (2019) Catalán Ros, Leyre; Pérez Artieda, Miren Gurutze; Berlanga Labari, Carlos; Garacochea Sáenz, Amaia; Rodríguez García, Antonio; Domínguez, Vidal; Montañez, Ana Carolina; Padilla, Germán D.; Pérez, Nemesio M.; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ingeniería
    Supplying power to volcanic monitoring stations constitutes a challenge due to both the access difficulties and the acidic environment associated with volcanoes. ELECTROVOLCAN project is developing thermoelectric generators that make use of the temperature of the available fumaroles to directly supply electricity to the stations in a robust, compact and reliable way. The main element of thermoelectric generators are the thermoelectric modules, based on Seebeck effect. Nonetheless, since the efficiency of these modules increases with the temperature difference between their sides, the introduction of heat exchangers becomes essential. The present study analyses the behavior of different materials used in the construction of the heat exchangers in the acidic environment of Teide National Park.
  • PublicationOpen Access
    The importance of the assembly in thermoelectric generators
    (IntechOpen, 2018) Araiz Vega, Miguel; Catalán Ros, Leyre; Herrero Mola, Óscar; Pérez Artieda, Miren Gurutze; Rodríguez García, Antonio; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería
    Generally, in the optimization of thermoelectric generators, only the heat exchangers or the thermoelectric modules themselves are taken into account. However, the assembly of the generator as a whole is of vital importance since a bad contact or a thermal bridge can waste the performance of an optimal generator. In this sense, the present chapter analyzes experimentally the use of different interface materials to reduce the thermal contact resistance between the modules and the heat exchangers, the influence of the pressure distribution in the assembly as well as the effect of different insulating materials in order to reduce the thermal bridge between the exchangers. Thus, it has been demonstrated that a good assembly requires the implementation of thermal interface materials to ensure the microscopic contact between the heat exchangers and the modules, besides a uniform clamping pressure. Nevertheless, since this is normally achieved with screws, they represent a source of thermal bridges in conjunction with the small distance between the exchangers. In order to reduce heat losses due to thermal bridges, which can represent up to one-third of the incoming heat, an increment of the distance between the exchangers and the use of an insulator is recommended.
  • PublicationOpen Access
    New opportunities for electricity generation in shallow hot dry rock fields: a study of thermoelectric generators with different heat exchangers
    (Elsevier, 2019) Catalán Ros, Leyre; Aranguren Garacochea, Patricia; Araiz Vega, Miguel; Pérez Artieda, Miren Gurutze; Astrain Ulibarrena, David; Institute of Smart Cities - ISC
    Despite being one of the largest renewable sources, geothermal energy is not widely utilized for electricity generation. In order to leverage shallow hot dry rock (HDR) fields, the present paper proposes an alternative to enhanced geothermal systems (EGS): thermoelectric generators. Based on the conditions of Timanfaya National Park, a prototype has been built to experimentally analyze the feasibility of the proposed solution. The prototype is composed by a two phase closed thermosyphon (TPCT) as hot side heat exchanger, two thermoelectric modules, and it considers different cold side heat exchangers: fin dissipators assisted by a fan and loop thermosyphons, both with various geometries. Experiments have demonstrated that loop thermosyphons represent the best alternative due to their low thermal resistance and, especially, due to their lack of auxiliary consumption, leading to a maximum net power generation of 3.29 W per module with a temperature difference of 180 °C (200 °C in the hot side and 20 °C as ambient temperature), 54% more than with fin dissipators. Hence, there exists a new opportunity for electricity generation in shallow hot dry rock fields: thermoelectric generators with biphasic thermosyphons as heat exchangers, a patented and robust solution.