Sesma Redín, Rubén

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sesma Redín

First Name

Rubén

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Speeding-up diffusion models for remote sensing semantic segmentation
    (Elsevier, 2025-08-01) Pascual Casas, Rubén; Ayala Lauroba, Christian; Sesma Redín, Rubén; Jurío Munárriz, Aránzazu; Paternain Dallo, Daniel; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    Denoising Diffusion Probabilistic Models (DDPMs) have demonstrated exceptional potential across various generative modeling tasks. Despite evident promise in semantic segmentation, their adoption for remote sensing remains limited primarily due to computationally demanding inference. While initial approaches using DDPMs in remote sensing achieve competitive accuracy with state-of-the-art models, the multi-step nature of their image generation process poses a major bottleneck. To address this limitation, this paper investigates three key strategies for accelerating inference: (1) optimizing training and inference steps, (2) applying DDPM acceleration techniques adapted to segmentation task (including Denoising Diffusion Implicit Models, Improved Denoising Diffusion Models, and Progressive Distillation), and (3) thoroughly analyzing the trade-off between accuracy improvement and additional inference time when using test-time augmentation. These strategies are extensively tested with two established remote sensing semantic segmentation datasets focused on buildings and roads. Finally, we compare the optimized diffusion-based model with state-of-the-art convolutional-based models in terms of accuracy and inference times, showing the narrowing gap between both approaches and the increasing viability of diffusion-based segmentation for practical applications.
  • PublicationOpen Access
    A deep learning approach to an enhanced building footprint and road detection in high-resolution satellite imagery
    (MDPI, 2021) Ayala Lauroba, Christian; Sesma Redín, Rubén; Aranda, Carlos; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua
    The detection of building footprints and road networks has many useful applications including the monitoring of urban development, real-time navigation, etc. Taking into account that a great deal of human attention is required by these remote sensing tasks, a lot of effort has been made to automate them. However, the vast majority of the approaches rely on very high-resolution satellite imagery (<2.5 m) whose costs are not yet affordable for maintaining up-to-date maps. Working with the limited spatial resolution provided by high-resolution satellite imagery such as Sentinel-1 and Sentinel-2 (10 m) makes it hard to detect buildings and roads, since these labels may coexist within the same pixel. This paper focuses on this problem and presents a novel methodology capable of detecting building and roads with sub-pixel width by increasing the resolution of the output masks. This methodology consists of fusing Sentinel-1 and Sentinel-2 data (at 10 m) together with OpenStreetMap to train deep learning models for building and road detection at 2.5 m. This becomes possible thanks to the usage of OpenStreetMap vector data, which can be rasterized to any desired resolution. Accordingly, a few simple yet effective modifications of the U-Net architecture are proposed to not only semantically segment the input image, but also to learn how to enhance the resolution of the output masks. As a result, generated mappings quadruplicate the input spatial resolution, closing the gap between satellite and aerial imagery for building and road detection. To properly evaluate the generalization capabilities of the proposed methodology, a data-set composed of 44 cities across the Spanish territory have been considered and divided into training and testing cities. Both quantitative and qualitative results show that high-resolution satellite imagery can be used for sub-pixel width building and road detection following the proper methodology.
  • PublicationOpen Access
    Super-resolution of Sentinel-2 images using convolutional neural networks and real ground truth data
    (MDPI, 2020) Galar Idoate, Mikel; Sesma Redín, Rubén; Ayala Lauroba, Christian; Albizua, Lourdes; Aranda, Carlos; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua, 0011-1408-2020-000008.
    Earth observation data is becoming more accessible and affordable thanks to the Copernicus programme and its Sentinel missions. Every location worldwide can be freely monitored approximately every 5 days using the multi-spectral images provided by Sentinel-2. The spatial resolution of these images for RGBN (RGB + Near-infrared) bands is 10 m, which is more than enough for many tasks but falls short for many others. For this reason, if their spatial resolution could be enhanced without additional costs, any posterior analyses based on these images would be benefited. Previous works have mainly focused on increasing the resolution of lower resolution bands of Sentinel-2 (20 m and 60 m) to 10 m resolution. In these cases, super-resolution is supported by bands captured at finer resolutions (RGBN at 10 m). On the contrary, this paper focuses on the problem of increasing the spatial resolution of 10 m bands to either 5 m or 2.5 m resolutions, without having additional information available. This problem is known as single-image super-resolution. For standard images, deep learning techniques have become the de facto standard to learn the mapping from lower to higher resolution images due to their learning capacity. However, super-resolution models learned for standard images do not work well with satellite images and hence, a specific model for this problem needs to be learned. The main challenge that this paper aims to solve is how to train a super-resolution model for Sentinel-2 images when no ground truth exists (Sentinel-2 images at 5 m or 2.5 m). Our proposal consists of using a reference satellite with a high similarity in terms of spectral bands with respect to Sentinel-2, but with higher spatial resolution, to create image pairs at both the source and target resolutions. This way, we can train a state-of-the-art Convolutional Neural Network to recover details not present in the original RGBN bands. An exhaustive experimental study is carried out to validate our proposal, including a comparison with the most extended strategy for super-resolving Sentinel-2, which consists in learning a model to super-resolve from an under-sampled version at either 40 m or 20 m to the original 10 m resolution and then, applying this model to super-resolve from 10 m to 5 m or 2.5 m. Finally, we will also show that the spectral radiometry of the native bands is maintained when super-resolving images, in such a way that they can be used for any subsequent processing as if they were images acquired by Sentinel-2.