Person: Torres García, Alicia E.
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Torres García
First Name
Alicia E.
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
0000-0001-7952-7910
person.page.upna
811111
Name
9 results
Search Results
Now showing 1 - 9 of 9
Publication Open Access A gap waveguide-based compact rectangular waveguide to a packaged microstrip inline transition(MDPI, 2020) Pérez Escudero, José Manuel; Torres García, Alicia E.; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Institute of Smart Cities - ISCIn this paper two different simple to design and easy to manufacturing transitions from a microstrip to rectangular waveguide based on ridge and groove gap waveguides are studied. The first one is based on a combination of a groove and ridge gap waveguide. In this case, the microstrip substrate occupies the whole bottom metallic housing block, namely, the transition and the gap between the bed of nails and the lid; therefore, it does not require any substrate shaping. Nevertheless, the transition needs to replace groove waveguide by ridge gap waveguide sections to avoid higher-order mode excitation. In the second approach, based on only a groove gap waveguide, the substrate is shaped to be only in the microstrip section, that is, outside the bed of nails area. This leads to a simplification of the design procedure. Prototypes of both transitions have been characterized, showing good agreement with the simulations taking into account the manufacturing tolerances. Performance comparable to the state-of-the-art in this frequency band has been achieved.Publication Open Access Silicon integrated subharmonic mixer on a photonic-crystal platform(IEEE, 2021) Torres García, Alicia E.; Pérez Escudero, José Manuel; Teniente Vallinas, Jorge; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper presents a planar silicon integrated subharmonic mixer on top of a photonic-crystal platform. The local oscillator (LO) power is injected through a 2D photoniccrystal (PC) slab to a resonant cavity that effectively couples the signal to a planar bow-tie antenna. The same antenna, which is printed on the top of the PC cavity, contains an antiparallel Schottky diode pair which performs the down-conversion. The proposed design is a simple, easy to integrate, low cost, low profile device. Moreover, the described fabrication process is compatible with active components integration. The performance of the design has been experimentally demonstrated showing good agreement with the simulation and is comparable with the stateof-the-art of planar mixers. The work presented here is based on concepts and technologies from electronics and photonics domains and may be a good starting point for the creation of new devices, allowing the integration and upgrading of existing techniques from both worlds.Publication Open Access A gap waveguide fed circular polarization antennas in the millimeter wave range(IEEE, 2020) Pérez Quintana, Dayan; Torres García, Alicia E.; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this work, a novel circular polarization (CP) antennas in ridge gap waveguide (RGW) working in the V-band of the millimeter-wave spectrum is presented. CP is generated in a simple and effective way by means of two orthogonal feeder arms that excite a CP in a rotated square-shaped slot placed on top metallic lid. Parametric simulation studies demonstrate that a difference between both arms length of approximately λ/4 leads to high-purity CP within a relatively broad bandwidth. A square-shaped slot antenna is manufactured and experimentally analyzed. A broadband matching with a reflection coefficient magnitude below -10 dB (S11 <; -10 dB) is achieved from 60.5 to 69.3 GHz. Applying the axial ratio criterion (AR <; 3 dB) the bandwidth in CP is 10.74%, with respect to the central frequency. The maximum gain at broadside is 5.49 dB at 66.8 GHz.Publication Open Access Comparison of modified Soret lenses for dual band integrated detectors(IEEE, 2020) Torres García, Alicia E.; Pérez Escudero, José Manuel; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper presents the comparison of different modified Soret lenses suitable for a millimeter and submillimeterwave dualband integrated pixel detectors. The approach is based on the modification of a printed planar Soret lens, designed to operate in the sub-mm range, to obtain an antenna at the millimeter region. Three modifications of a transmission-mode Soret Lens at 850 GHz based on spiral, logarithmic and meander antennas geometries have been analyzed with a combination of Kirchhoffs Diffraction and full-wave simulation methods. The performance of the designs has been experimentally demonstrated in the submillimeterwave band, showing good agreement with simulation results.Publication Open Access Modified Soret lenses for dual band integrated detectors at submillimetre and millimetre wavelengths(IEEE, 2020) Torres García, Alicia E.; Pérez Escudero, José Manuel; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis paper presents a planar silicon integrated subharmonic mixer on top of a photonic-crystal platform. The local oscillator (LO) power is injected through a 2D photonic crystal (PC) slab to a resonant cavity that effectively couples the signal to a planar bow-tie antenna. The same antenna, which is printed on the top of the PC cavity, contains an antiparallel Schottky diode pair which performs the down-conversion. The proposed design is a simple, easy to integrate, low cost, low profile device. Moreover, the described fabrication process is compatible with active components integration. The performance of the design has been experimentally demonstrated showing good agreement with the simulation and is comparable with the state of-the-art of planar mixers. The work presented here is based on concepts and technologies from electronics and photonics domains and may be a good starting point for the creation of new devices, allowing the integration and upgrading of existing techniques from both worlds.Publication Open Access Compact groove diamond antenna in gap waveguide technology with broadband circular polarization at millimeter waves(IEEE, 2020) Pérez Quintana, Dayan; Torres García, Alicia E.; Ederra Urzainqui, Íñigo; Beruete Díaz, Miguel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper, three compact antennas using the Ridge Gap Waveguide (RGW) technology working in the millimeter-wave band (60 GHz), with a high-purity and broadband circular polarization (CP) are numerically and experimentally analyzed. The structure is fed from the bottom by means of a standard WR-15 waveguide (V-band) to make it compatible with standard measurement systems. It is coupled with a miniaturized step transition to a ridgeline that ends in two arms of different lengths. CP is generated in a simple and effective way, by means of two orthogonal feeder arms that excite a CP in a diamond-shaped slot on top. Simulations and measurements have an excellent agreement reaching a matching bandwidth (S11 <-10 dB) from 60.3 to 69.6 GHz (> 9 GHz). Applying the axial ratio criterion (AR < 3 dB) the bandwidth in CP is 14.48%, with respect to the central frequency (59 to 70 GHz). The maximum gain is obtained with the most evolved design incorporating a diamond aperture with a horn taper and a circular groove, reaching a value of 11.12 dB at 67.3 GHz.Publication Open Access A simplified design inline microstrip-to-waveguide transition(MDPI, 2018) Ederra Urzainqui, Íñigo; Gonzalo García, Ramón; Pérez Escudero, José Manuel; Torres García, Alicia E.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA simplified design of an inline transition between microstrip and rectangular waveguide is presented in this paper. The transition makes use of a dielectric filled rectangular waveguide (DFRW) as an intermediate step, which simplifies manufacturing and allows for an analytical design. The behavior of the transition has been experimentally validated in the W-band by means of a back-to-back configuration. Good performance has been achieved: a return loss greaterthan 10 dB and mean insertion loss lower than 1 dB.Publication Open Access A Chebyshev transformer-based microstri-to-groove-gap-waveguide inline transition for MMIC packaging(IEEE, 2019) Pérez Escudero, José Manuel; Torres García, Alicia E.; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe gap waveguide technology has become an alternative to millimeter- and submillimeter-wave electronic circuit packaging thanks to the loss reduction associated with its use. In this paper, a simplified design of an inline transition between a microstrip and a groove gap waveguide (GGW) operating at the W-band is presented. The transition consists of a tapered microstrip line and a Chebyshev adapter that couple the quasi-TEM mode of the microstrip line to the so-called vertical mode of the GGW. The simplicity of this design makes this transition appropriate for monolithic microwave integrated circuit (MMIC) packaging at millimeter frequencies and above. The simulation results have been experimentally validated in the W-band. A good performance has been achieved, resulting in a return loss better than 10 dB and a mean insertion loss lower than 2 dB.Publication Open Access Design of a groove gap waveguide to microstrip inline transition(IEEE, 2019) Pérez Escudero, José Manuel; Torres García, Alicia E.; Gonzalo García, Ramón; Ederra Urzainqui, Íñigo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper the design of an inline transition between microstrip and groove gap waveguide operating at Wband is presented. The transition consists of two sections: a tapered microstrip line and a Chebyshev transformer. The simplicity of this design makes this transition appropriate for MMIC packaging at millimeter frequencies and above. Experimental validation has been carried out in theW-band. Good performance has been achieved: return loss better than 10 dB and mean insertion loss lower than 2 dB.