Person: Torres García, Alicia E.
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Torres García
First Name
Alicia E.
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ORCID
0000-0001-7952-7910
person.page.upna
811111
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Enhancing the infrared and visible emission properties of calcium silicate hydrate for radiative cooling using metamaterials(IEEE, 2022) Lezaun Capdevila, Carlos; Dolado, J. S.; Torres García, Alicia E.; Pérez Escudero, José Manuel; Liberal Olleta, Íñigo; Beruete Díaz, Miguel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTwo periodic structures composed of metal cylinders with different orientations are used to improve the solar reflection of calcium silicate hydrate (CSH) while maintaining its atmospheric emission. Interesting effects have been found when the distance between bars is small, suggesting that lattice effects, arising from the interaction between the rods could be leveraged in the design of these metamaterials. The size of the metal bars is selected based on state of the art micro-manufacturing techniques. This study limits its scope to a CSH gel model; i.e. the most important component of cement-based materials. Further research will be undertaken to consider a best description of the dielectric function of concrete.Publication Open Access Design of multi-layered radiative cooling structures using evolutionary algorithms(IEEE, 2022) Lezaun Capdevila, Carlos; Jorajuria Gómez, Tania; Torres García, Alicia E.; Herrera, Pilar; Beruete Díaz, Miguel; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work we present a novel way to design thinfilm radiative cooling metamaterials based on genetic algorithms. Three simulations with different design constraints have been done, resulting in three structures that achieve 39.96 W/m2 , 57.78 W/m2 and 61.77 W/m2 under direct sunlight, respectively. These structures are shorter than 5 µm of height and are composed of 9, 15 and 24 layers. This design method has the advantages of being automatable, needs fewer design experience in metamaterials and does not rely on commercial simulators. This work opens the path to an easy way of automated design of thin-film multi-layered devices for radiative cooling and other applications in the infrared range.