Seco Meneses, Andrés
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Seco Meneses
First Name
Andrés
person.page.departamento
Ingeniería
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Evaluation of the potential of natural mining by-products as constituents of stabilized rammed earth building materials(MDPI, 2025-05-06) Martín Antunes, Miguel Ángel; Perlot, Céline; Villanueva Roldán, Pedro; Abdallah, Rafik; Seco Meneses, Andrés; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this investigation, different natural by-products were used to modify the Particle Size Distribution (PSD) of a soil to evaluate their potential in Stabilized Rammed Earth (SRE) building. Three different mixes were manufactured: (i) a mix composed entirely of a clayey soil, (ii) a mix consisting of mining by-products and clayey soil and (iii) a mix entirely based on mining by-products. Unstabilized and stabilized samples of the mixes were manufactured using two cement dosages (2.5% and 5%), and the samples were tested for Unconfined Compressive Strength (UCS), soaked UCS, and wetting and drying tests. Mining by-products demonstrated significant potential in SRE building, as their addition to the clayey soil resulted in higher UCS values compared to the UCS obtained from clayey soil alone. Unstabilized samples lost their integrity during exposure to water. The inclusion of mining by-products also showed potential as, although the mixes did not fully meet the requirements for soaked UCS and the wetting and drying tests, the mix containing both mining by-products and clayey soil retained its integrity in water, unlike the samples composed solely of clayey soil. M3C5 successfully met the requirements for soaked UCS and the wetting and drying tests, further highlighting the great potential of mining by-products in SRE building.Publication Open Access A methodology to optimize natural by-product mixes for rammed earth construction based on the Taguchi method(MDPI, 2024-11-13) Martín Antunes, Miguel Ángel; Prieto Cobo, Eduardo; García, Beñat; Perlot, Céline; Seco Meneses, Andrés; Ingeniería; Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarrroako Unibertsitate PublikoaIn this investigation, the Taguchi method was employed to optimize a mix based on four natural by-products for rammed earth construction. Two separate studies were conducted to enhance the dry density and the Unconfined Compressive Strength (UCS). The four materials were assessed across four different levels, with moisture content also factored in as a parameter within a statistical analysis of 16 combinations. The Taguchi method predicted the combinations in which the Particle Size Distribution optimized the dry density and UCS as well as their dry density and UCS values. From the results, Moisture Content was the parameter with the highest influence on the optimization as well as the dry density and the UCS. It was observed that there was a direct relationship between the bulk density of the different granulometric fractions and their influence on the mix's dry density. The fines were the material constituents that showed the highest influence on the mix UCS. When using the Taguchi method in RE building, the factor that should be maximized should is the mechanical strength.