Pozueta Romero, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pozueta Romero

First Name

Javier

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 18
  • PublicationOpen Access
    Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis
    (Public Library of Science, 2015) Bahaji, Abdellatif; Sánchez López, Ángela María; Diego, Nuria de; Muñoz Pérez, Francisco José; Baroja Fernández, Edurne; Li, Jun; Ricarte Bermejo, Adriana; Baslam, Marouane; Aranjuelo Michelena, Iker; Almagro Zabalza, Goizeder; Humplik, Jan F.; Novák, Ondrej; Spíchal, Lukás; Dolezal, Karel; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIM010491.RI2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P)H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs.
  • PublicationOpen Access
    N-glycomic and microscopic subcellular localization analyses of NPP1, 2 and 6 strongly indicate that trans-Golgi compartments participate in the Golgi to plastid traffic of nucleotide pyrophosphatase/phosphodiesterases in rice
    (Oxford University Press, 2016) Kaneko, Kentaro; Takamatsu, Takeshi; Inomata, Takuya; Oikawa, Kazusato; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIQ14067.RI1
    Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1–NPP6. Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)–Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2–GFP and NPP6–GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER–Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs.
  • PublicationOpen Access
    Characterization of multiple SPS knockout mutants reveals redundant functions of the four Arabidopsis sucrose phosphate synthase isoforms in plant viability, and strongly indicates that enhanced respiration and accelerated starch turnover can alleviate the blockage of sucrose biosynthesis
    (Elsevier, 2015) Bahaji, Abdellatif; Baroja Fernández, Edurne; Ricarte Bermejo, Adriana; Sánchez López, Ángela María; Muñoz Pérez, Francisco José; Baslam, Marouane; Almagro Zabalza, Goizeder; Sesma Pascual, María Teresa; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We characterized multiple knock-out mutants of the four Arabidopsis sucrose phosphate synthase (SPSA1, SPSA2, SPSB and SPSC) isoforms. Despite their reduced SPS activity, spsa1/spsa2, spsa1/spsb, spsa2/spsb, spsa2/spsc, spsb/spsc, spsa1/spsa2/spsb and spsa2/spsb/spsc mutants displayed wild type (WT) vegetative and reproductive morphology, and showed WT photosynthetic capacity and respiration. In contrast, growth of rosettes, flowers and siliques of the spsa1/spsc and spsa1/spsa2/spsc mutants was reduced compared with WT plants. Furthermore, these plants displayed a high dark respiration phenotype. spsa1/spsb/spsc and spsa1/spsa2/spsb/spsc seeds poorly germinated and produced aberrant and sterile plants. Leaves of all viable sps mutants, except spsa1/spsc and spsa1/spsa2/spsc, accumulated WT levels of nonstructural carbohydrates. spsa1/spsc leaves possessed high levels of metabolic intermediates and activities of enzymes of the glycolytic and tricarboxylic acid cycle pathways, and accumulated high levels of metabolic intermediates of the nocturnal starch-to-sucrose conversion process, even under continuous light conditions. Results presented in this work show that SPS is essential for plant viability, reveal redundant functions of the four SPS isoforms in processes that are important for plant growth and nonstructural carbohydrate metabolism, and strongly indicate that accelerated starch turnover and enhanced respiration can alleviate the blockage of sucrose biosynthesis in spsa1/spsc leaves.
  • PublicationOpen Access
    Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees
    (Elsevier, 2014) Nebauer, Sergio G.; Renau Morata, Begoña; Lluch, Yolanda; Baroja Fernández, Edurne; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    The fruit is the main sink organ in Citrus and captures almost all available photoassimilates during its development. Consequently, carbohydrate partitioning and starch content depend on the crop load of Citrus trees. Nevertheless, little is known about the mechanisms controlling the starch metabolism at the tree level in relation to presence of fruit. The aim of this study was to find the relation between the seasonal variation of expression and activity of the genes involved in carbon metabolism and the partition and allocation of carbohydrates in ‘Salustiana’ sweet orange trees with different crop loads. Metabolisable carbohydrates, and the expression and activity of the enzymes involved in sucrose and starch metabolism, including sucrose transport, were determined during the year in the roots and leaves of 40-year-old trees bearing heavy crop loads ('on' trees) and trees with almost no fruits ('off' trees). Fruit altered photoassimilate partitioning in trees. Sucrose content tended to be constant in roots and leaves, and surplus fixed carbon is channeled to starch production. Differences between 'on' and 'off' trees in starch content can be explained by differences in ADP-glucose pyrophosphorylase (AGPP) expression/activity and a-amylase activity which varies depending on crop load. The observed relation of AGPP and UGPP (UDP-glucose pyrophosphorylase) is noteworthy and indicates a direct link between sucrose and starch synthesis. Furthermore, different roles for sucrose transporter SUT1 and SUT2 have been proposed. Variation in soluble sugars content cannot explain the differences in gene expression between the 'on' and 'off' trees. A still unknown signal from fruit should be responsible for this control.
  • PublicationOpen Access
    Genome-wide screening of genes whose enhanced expression affects glycogen accumulation in Escherichia coli
    (Oxford University Press, 2010) Eydallin, Gustavo; Montero Macarro, Manuel; Almagro Zabalza, Goizeder; Sesma Pascual, María Teresa; Viale Bailone, Alejandro M.; Muñoz Pérez, Francisco José; Rahimpour, Mehdi; Baroja Fernández, Edurne; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Using a systematic and comprehensive gene expression library (the ASKA library), we have carried out a genome-wide screening of the genes whose increased plasmid-directed expression affected glycogen metabolism in Escherichia coli. Of the 4123 clones of the collection, 28 displayed a glycogen-excess phenotype, whereas 58 displayed a glycogen-deficient phenotype. The genes whose enhanced expression affected glycogen accumulation were classified into various functional categories including carbon sensing, transport and metabolism, general stress and stringent responses, factors determining intercellular communication, aggregative and social behaviour, nitrogen metabolism and energy status. Noteworthy, one-third of them were genes about which little or nothing is known. We propose an integrated metabolic model wherein E. coli glycogen metabolism is highly interconnected with a wide variety of cellular processes and is tightly adjusted to the nutritional and energetic status of the cell. Furthermore, we provide clues about possible biological roles of genes of still unknown functions.
  • PublicationOpen Access
    Adenosine diphosphate glucose pyrophosphatase: a plastidial phosphodiesterase that prevents starch biosynthesis
    (National Academy of Sciences, 2000) Rodríguez López, Milagros; Baroja Fernández, Edurne; Zandueta Criado, Aitor; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    A distinct phosphodiesterasic activity (EC 3.1.4) was found in both mono- and dicotyledonous plants that catalyzes the hydrolytic breakdown of ADPglucose (ADPG) to produce equimolar amounts of glucose-1-phosphate and AMP. The enzyme responsible for this activity, referred to as ADPG pyrophosphatase (AGPPase), was purified over 1,100-fold from barley leaves and subjected to biochemical characterization. The calculated Keq* (modified equilibrium constant) value for the ADPG hydrolytic reaction at pH 7.0 and 25°C is 110, and its standard-state free-energy change value (DG*) is 22.9 kcalymol (1 kcal 5 4.18 kJ). Kinetic analyses showed that, although AGPPase can hydrolyze several low-molecular weight phosphodiester bond-containing compounds, ADPG proved to be the best substrate (Km 5 0.5 mM). Pi and phosphorylated compounds such as 3-phosphoglycerate, PPi, ATP, ADP, NADP1, and AMP are inhibitors of AGPPase. Subcellular localization studies revealed that AGPPase is localized exclusively in the plastidial compartment of cultured cells of sycamore (Acer pseudoplatanus L.), whereas it occurs both inside and outside the plastid in barley endosperm. In this paper, evidence is presented that shows that AGPPase, whose activity declines concomitantly with the accumulation of starch during development of sink organs, competes with starch synthase (ADPG:1,4-a-D-glucan 4-a- D-glucosyltransferase; EC 2.4.1.21) for ADPG, thus markedly blocking the starch biosynthesis.
  • PublicationOpen Access
    Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production
    (National Academy of Sciences, 2011) Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Li, Jun; Bahaji, Abdellatif; Almagro Zabalza, Goizeder; Montero Macarro, Manuel; Etxeberria, Ed; Hidalgo Cruz, Maite; Sesma Pascual, María Teresa; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Sucrose synthase (SUS) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate-glucose and fructose. In Arabidopsis, a multigene family encodes six SUS (SUS1-6) isoforms. The involvement of SUS in the synthesis of UDP-glucose and ADP-glucose linked to Arabidopsis cellulose and starch biosynthesis, respectively, has been questioned by Barratt et al. [(2009) Proc Natl Acad Sci USA 106:13124–13129], who showed that (i) SUS activity in wild type (WT) leaves is too low to account for normal rate of starch accumulation in Arabidopsis, and (ii) different organs of the sus1/sus2/sus3/sus4 SUS mutant impaired in SUS activity accumulate WT levels of ADP-glucose, UDP-glucose, cellulose and starch. However, these authors assayed SUS activity under unfavorable pH conditions for the reaction. By using favorable pH conditions for assaying SUS activity, in this work we show that SUS activity in the cleavage direction is sufficient to support normal rate of starch accumulation in WT leaves. We also demonstrate that sus1/sus2/sus3/sus4 leaves display WT SUS5 and SUS6 expression levels, whereas leaves of the sus5/sus6 mutant display WT SUS1–4 expression levels. Furthermore, we show that SUS activity in leaves and stems of the sus1/sus2/sus3/sus4 and sus5/sus6 plants is ~85% of that of WT leaves, which can support normal cellulose and starch biosynthesis. The overall data disprove Barratt et al. (2009) claims, and are consistent with the possible involvement of SUS in cellulose and starch biosynthesis in Arabidopsis.
  • PublicationOpen Access
    Reply to Smith et al.: No evidence to challenge the current paradigm on starch and cellulose biosynthesis involving sucrose synthase activity
    (National Academy of Sciences, 2012) Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Bahaji, Abdellatif; Almagro Zabalza, Goizeder; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    In our opinion, no pressing biological evidence has been presented by Barratt et al. to challenge the current paradigm on cellulose and starch metabolism involving SUS activity. In this context, we must emphasize that Angeles-Núñez and Tiessen have shown that SUS2 and SUS3 are required for channeling carbon toward ADP-glucose and starch in Arabidopsis seeds.
  • PublicationOpen Access
    Most of ADP-glucose linked to starch biosynthesis occurs outside the chloroplast in source leaves
    (National Academy of Sciences, 2004) Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Zandueta Criado, Aitor; Morán Zorzano, María Teresa; Viale Bailone, Alejandro M.; Alonso Casajús, Nora; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Sucrose and starch are end products of two segregated gluconeogenic pathways, and their production takes place in the cytosol and chloroplast of green leaves, respectively. According to this view, the plastidial ADP glucose (ADPG) pyrophosphorylase (AGP) is the sole enzyme catalyzing the synthesis of the starch precursor molecule ADPG. However, a growing body of evidences indicates that starch formation involves the import of cytosolic ADPG to the chloroplast. This evidence is consistent with the idea that synthesis of the ADPG linked to starch biosynthesis takes place in the cytosol by means of sucrose synthase, whereas AGP channels the glucose units derived from the starch breakdown. To test this hypothesis, we first investigated the subcellular localization of ADPG. Toward this end, we constructed transgenic potato plants that expressed the ADPG-cleaving adenosine diphosphate sugar pyrophosphatase (ASPP) from Escherichia coli either in the chloroplast or in the cytosol. Source leaves from plants expressing ASPP in the chloroplast exhibited reduced starch and normal ADPG content as compared with control plants. Most importantly however, leaves from plants expressing ASPP in the cytosol showed a large reduction of the levels of both ADPG and starch, whereas hexose phosphates increased as compared with control plants. No pleiotropic changes in photosynthetic parameters and maximum catalytic activities of enzymes closely linked to starch and sucrose metabolism could be detected in the leaves expressing ASPP in the cytosol. The overall results show that, essentially similar to cereal endosperms, most of the ADPG linked to starch biosynthesis in source leaves occurs in the cytosol.
  • PublicationOpen Access
    Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli
    (National Academy of Sciences, 2001) Moreno Bruna, Beatriz; Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Bastarrica Berasategui, Ainara; Zandueta Criado, Aitor; Rodríguez López, Milagros; Lasa Uzcudun, Íñigo; Akazawa, Takashi; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as ‘‘nudix’’ hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wildtype bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli.