Pozueta Romero, Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pozueta Romero

First Name

Javier

person.page.departamento

Instituto de Agrobiotecnología (IdAB)

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 28
  • PublicationOpen Access
    Most of ADP-glucose linked to starch biosynthesis occurs outside the chloroplast in source leaves
    (National Academy of Sciences, 2004) Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Zandueta Criado, Aitor; Morán Zorzano, María Teresa; Viale Bailone, Alejandro M.; Alonso Casajús, Nora; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua
    Sucrose and starch are end products of two segregated gluconeogenic pathways, and their production takes place in the cytosol and chloroplast of green leaves, respectively. According to this view, the plastidial ADP glucose (ADPG) pyrophosphorylase (AGP) is the sole enzyme catalyzing the synthesis of the starch precursor molecule ADPG. However, a growing body of evidences indicates that starch formation involves the import of cytosolic ADPG to the chloroplast. This evidence is consistent with the idea that synthesis of the ADPG linked to starch biosynthesis takes place in the cytosol by means of sucrose synthase, whereas AGP channels the glucose units derived from the starch breakdown. To test this hypothesis, we first investigated the subcellular localization of ADPG. Toward this end, we constructed transgenic potato plants that expressed the ADPG-cleaving adenosine diphosphate sugar pyrophosphatase (ASPP) from Escherichia coli either in the chloroplast or in the cytosol. Source leaves from plants expressing ASPP in the chloroplast exhibited reduced starch and normal ADPG content as compared with control plants. Most importantly however, leaves from plants expressing ASPP in the cytosol showed a large reduction of the levels of both ADPG and starch, whereas hexose phosphates increased as compared with control plants. No pleiotropic changes in photosynthetic parameters and maximum catalytic activities of enzymes closely linked to starch and sucrose metabolism could be detected in the leaves expressing ASPP in the cytosol. The overall results show that, essentially similar to cereal endosperms, most of the ADPG linked to starch biosynthesis in source leaves occurs in the cytosol.
  • PublicationOpen Access
    A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters
    (Nature Research, 2018) Almagro Zabalza, Goizeder; Viale Bailone, Alejandro M.; Montero Macarro, Manuel; Muñoz Pérez, Francisco José; Baroja Fernández, Edurne; Mori, Hirotada; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    ADP-glucose is the precursor of glycogen biosynthesis in bacteria, and a compound abundant in the starchy plant organs ingested by many mammals. Here we show that the enteric species Escherichia coli is capable of scavenging exogenous ADP-glucose for use as a glycosyl donor in glycogen biosynthesis and feed the adenine nucleotide pool. To unravel the molecular mechanisms involved in this process, we screened the E. coli single-gene deletion mutants of the Keio collection for glycogen content in ADP-glucose-containing culture medium. In comparison to wild-type (WT) cells, individual ∆nupC and ∆nupG mutants lacking the cAMP/CRP responsive inner-membrane nucleoside transporters NupC and NupG displayed reduced glycogen contents and slow ADP-glucose incorporation. In concordance, ∆cya and ∆crp mutants accumulated low levels of glycogen and slowly incorporated ADP-glucose. Two-thirds of the glycogen-excess mutants identified during screening lacked functions that underlie envelope biogenesis and integrity, including the RpoE specific RseA anti-sigma factor. These mutants exhibited higher ADP-glucose uptake than WT cells. The incorporation of either ∆crp, ∆nupG or ∆nupC null alleles sharply reduced the ADP-glucose incorporation and glycogen content initially witnessed in ∆rseA cells. Overall, the data showed that E. coli incorporates extracellular ADP-glucose through a cAMP/CRP-regulated process involving the NupC and NupG nucleoside transporters that is facilitated under envelope stress conditions.
  • PublicationOpen Access
    Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch
    (Wiley, 2011) Gámez-Arjona, Francisco M.; Li, Jun; Raynaud, Sandy; Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Ovecka, Miroslav; Ragel, Paula; Bahaji, Abdellatif; Pozueta Romero, Javier; Mérida, Ángel; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Starch is an important renewable raw material with an increasing number of applications. Several attempts have been made to obtain plants that produce modified versions of starch or higher starch yield. Most of the approaches designed to increase the levels of starch have focused on the increment of the amount of ADP‐glucose or ATP available for starch biosynthesis. In this work, we show that the overexpression of starch synthase class IV (SSIV) increases the levels of starch accumulated in the leaves of Arabidopsis by 30%–40%. In addition, SSIV‐overexpressing lines display a higher rate of growth. The increase in starch content as a consequence of enhanced SSIV expression is also observed in long‐term storage starch organs such as potato tubers. Overexpression of SSIV in potato leads to increased tuber starch content on a dry weight basis and to increased yield of starch production in terms of tons of starch/hectare. These results identify SSIV as one of the regulatory steps involved in the control of the amount of starch accumulated in plastids.
  • PublicationOpen Access
    Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production
    (National Academy of Sciences, 2011) Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Li, Jun; Bahaji, Abdellatif; Almagro Zabalza, Goizeder; Montero Macarro, Manuel; Etxeberria, Ed; Hidalgo Cruz, Maite; Sesma Pascual, María Teresa; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Sucrose synthase (SUS) catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into the corresponding nucleoside diphosphate-glucose and fructose. In Arabidopsis, a multigene family encodes six SUS (SUS1-6) isoforms. The involvement of SUS in the synthesis of UDP-glucose and ADP-glucose linked to Arabidopsis cellulose and starch biosynthesis, respectively, has been questioned by Barratt et al. [(2009) Proc Natl Acad Sci USA 106:13124–13129], who showed that (i) SUS activity in wild type (WT) leaves is too low to account for normal rate of starch accumulation in Arabidopsis, and (ii) different organs of the sus1/sus2/sus3/sus4 SUS mutant impaired in SUS activity accumulate WT levels of ADP-glucose, UDP-glucose, cellulose and starch. However, these authors assayed SUS activity under unfavorable pH conditions for the reaction. By using favorable pH conditions for assaying SUS activity, in this work we show that SUS activity in the cleavage direction is sufficient to support normal rate of starch accumulation in WT leaves. We also demonstrate that sus1/sus2/sus3/sus4 leaves display WT SUS5 and SUS6 expression levels, whereas leaves of the sus5/sus6 mutant display WT SUS1–4 expression levels. Furthermore, we show that SUS activity in leaves and stems of the sus1/sus2/sus3/sus4 and sus5/sus6 plants is ~85% of that of WT leaves, which can support normal cellulose and starch biosynthesis. The overall data disprove Barratt et al. (2009) claims, and are consistent with the possible involvement of SUS in cellulose and starch biosynthesis in Arabidopsis.
  • PublicationOpen Access
    Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis
    (Public Library of Science, 2015) Bahaji, Abdellatif; Sánchez López, Ángela María; Diego, Nuria de; Muñoz Pérez, Francisco José; Baroja Fernández, Edurne; Li, Jun; Ricarte Bermejo, Adriana; Baslam, Marouane; Aranjuelo Michelena, Iker; Almagro Zabalza, Goizeder; Humplik, Jan F.; Novák, Ondrej; Spíchal, Lukás; Dolezal, Karel; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, IIM010491.RI2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P)H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs.
  • PublicationOpen Access
    Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli
    (American Society for Microbiology, 2006) Alonso Casajús, Nora; Dauvillee, David; Viale Bailone, Alejandro M.; Muñoz Pérez, Francisco José; Baroja Fernández, Edurne; Morán Zorzano, María Teresa; Eydallin, Gustavo; Ball, Steven; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    To understand the biological function of bacterial glycogen phosphorylase (GlgP), we have produced and characterized Escherichia coli cells with null or altered glgP expression. glgP deletion mutants (ΔglgP) totally lacked glycogen phosphorylase activity, indicating that all the enzymatic activity is dependent upon the glgP product. Moderate increases of glycogen phosphorylase activity were accompanied by marked reductions of the intracellular glycogen levels in cells cultured in the presence of glucose. In turn, both glycogen content and rates of glycogen accumulation in ΔglgP cells were severalfold higher than those of wild-type cells. These defects correlated with the presence of longer external chains in the polysaccharide accumulated by ΔglgP cells. The overall results thus show that GlgP catalyzes glycogen breakdown and affects glycogen structure by removing glucose units from the polysaccharide outer chains in E. coli.
  • PublicationOpen Access
    Arabidopsis responds to Alternaria alternata volatiles by triggering pPG-independent mechanisms
    (American Society of Plant Biologists, 2016) Sánchez López, Ángela María; Bahaji, Abdellatif; Diego, Nuria de; Baslam, Marouane; Li, Jun; Muñoz Pérez, Francisco José; Almagro Zabalza, Goizeder; García Gómez, Pablo; Ameztoy del Amo, Kinia; Ricarte Bermejo, Adriana; Novák, Ondrej; Humplik, Jan F.; Spíchal, Lukás; Dolezal, Karel; Ciordia, Sergio; Mena, María Carmen; Navajas, Rosana; Baroja Fernández, Edurne; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua (IIM010491.RI1); Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin- Benson cycle with the starch biosynthetic pathway in leaves. To elucidate the mechanisms involved in the responses of plants to microbial VCs and to investigate the extent of pPGI involvement, we characterized pPGI-null pgi1-2 Arabidopsis plants cultured in the presence or absence of VCs emitted by Alternaria alternata. We found that volatile emissions from this fungal phytopathogen promote growth, photosynthesis, and the accumulation of plastidic CKs in pgi1-2 leaves. Notably, the mesophyll cells of pgi1-2 leaves accumulated exceptionally high levels of starch following VC exposure. Proteomic analyses revealed that VCs promote global changes in the expression of proteins involved in photosynthesis, starch metabolism, and growth that can account for the observed responses in pgi1-2 plants. The overall data show that Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms by triggering pPGI-independent mechanisms.
  • PublicationOpen Access
    Systematic production of inactivating and non-inactivating suppressor mutations at the relA locus that compensate the detrimental effects of complete spoT loss and affect glycogen content in Escherichia coli
    (Public Library of Science, 2014) Montero Macarro, Manuel; Rahimpour, Mehdi; Viale Bailone, Alejandro M.; Almagro Zabalza, Goizeder; Eydallin, Gustavo; Sevilla, Ángel; Cánovas, Manuel; Bernal, Cristina; Lozano, Ana Belén; Muñoz Pérez, Francisco José; Baroja Fernández, Edurne; Bahaji, Abdellatif; Mori, Hirotada; Codoñer, Francisco M.; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In Escherichia coli, ppGpp is a major determinant of growth and glycogen accumulation. Levels of this signaling nucleotide are controlled by the balanced activities of the ppGpp RelA synthetase and the dual-function hydrolase/synthetase SpoT. Here we report the construction of spoT null (DspoT) mutants obtained by transducing a DspoT allele from DrelADspoT double mutants into relA+ cells. Iodine staining of randomly selected transductants cultured on a rich complex medium revealed differences in glycogen content among them. Sequence and biochemical analyses of 8 DspoT clones displaying glycogen-deficient phenotypes revealed different inactivating mutations in relA and no detectable ppGpp when cells were cultured on a rich complex medium. Remarkably, although the co-existence of DspoT with relA proficient alleles has generally been considered synthetically lethal, we found that 11 DspoT clones displaying high glycogen phenotypes possessed relA mutant alleles with non-inactivating mutations that encoded stable RelA proteins and ppGpp contents reaching 45–85% of those of wild type cells. None of the DspoT clones, however, could grow on M9-glucose minimal medium. Both Sanger sequencing of specific genes and high-throughput genome sequencing of the DspoT clones revealed that suppressor mutations were restricted to the relA locus. The overall results (a) defined in around 4 nmoles ppGpp/g dry weight the threshold cellular levels that suffice to trigger net glycogen accumulation, (b) showed that mutations in relA, but not necessarily inactivating mutations, can be selected to compensate total SpoT function(s) loss, and (c) provided useful tools for studies of the in vivo regulation of E. coli RelA ppGpp synthetase.
  • PublicationOpen Access
    Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli
    (National Academy of Sciences, 2001) Moreno Bruna, Beatriz; Baroja Fernández, Edurne; Muñoz Pérez, Francisco José; Bastarrica Berasategui, Ainara; Zandueta Criado, Aitor; Rodríguez López, Milagros; Lasa Uzcudun, Íñigo; Akazawa, Takashi; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as ‘‘nudix’’ hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wildtype bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli.
  • PublicationOpen Access
    Genetic and isotope ratio mass spectrometric evidence for the occurrence of starch degradation and cycling in illuminated Arabidopsis leaves
    (Public Library of Science, 2017) Baslam, Marouane; Baroja Fernández, Edurne; Ricarte Bermejo, Adriana; Sánchez López, Ángela María; Aranjuelo Michelena, Iker; Bahaji, Abdellatif; Muñoz Pérez, Francisco José; Almagro Zabalza, Goizeder; Pujol, Pablo; Galarza, Regina; Teixidor, Pilar; Pozueta Romero, Javier; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua
    Although there is a great wealth of data supporting the occurrence of simultaneous synthesis and breakdown of storage carbohydrate in many organisms, previous 13CO2 pulse-chase based studies indicated that starch degradation does not operate in illuminated Arabidopsis leaves. Here we show that leaves of gwd, sex4, bam4, bam1/bam3 and amy3/isa3/lda starch breakdown mutants accumulate higher levels of starch than wild type (WT) leaves when cultured under continuous light (CL) conditions. We also show that leaves of CL grown dpe1 plants impaired in the plastidic disproportionating enzyme accumulate higher levels of maltotriose than WT leaves, the overall data providing evidence for the occurrence of extensive starch degradation in illuminated leaves. Moreover, we show that leaves of CL grown mex1/ pglct plants impaired in the chloroplastic maltose and glucose transporters display a severe dwarf phenotype and accumulate high levels of maltose, strongly indicating that the MEX1 and pGlcT transporters are involved in the export of starch breakdown products to the cytosol to support growth during illumination. To investigate whether starch breakdown products can be recycled back to starch during illumination through a mechanism involving ADP-glucose pyrophosphorylase (AGP) we conducted kinetic analyses of the stable isotope carbon composition (δ13C) in starch of leaves of 13CO2 pulsed-chased WT and AGP lacking aps1 plants. Notably, the rate of increase of δ13C in starch of aps1 leaves during the pulse was exceedingly higher than that of WT leaves. Furthermore, δ13C decline in starch of aps1 leaves during the chase was much faster than that of WT leaves, which provides strong evidence for the occurrence of AGP-mediated cycling of starch breakdown products in illuminated Arabidopsis leaves.